Kurihara Kazuyoshi, Otomo Akira, Yamamoto Kazuhiro, Takahara Junichi, Tani Masahiko, Kuwashima Fumiyoshi
Department of Physics, Faculty of Education and Regional Studies, University of Fukui, Fukui, 910-8507 Japan.
Kobe Advanced ICT Research Center, National Institute of Information and Communications Technology (NICT), Kobe, 651-2492 Japan.
Plasmonics. 2015;10(1):165-182. doi: 10.1007/s11468-014-9791-3. Epub 2014 Oct 1.
This paper describes the plasmonic modes in the parabolic cylinder geometry as a theoretical complement to the previous paper (J Phys A 42:185401) that considered the modes in the circular paraboloidal geometry. In order to identify the plasmonic modes in the parabolic cylinder geometry, analytic solutions for surface plasmon polaritons are examined by solving the wave equation for the magnetic field in parabolic cylindrical coordinates using quasi-separation of variables in combination with perturbation methods. The examination of the zeroth-order perturbation equations showed that solutions cannot exist for the parabolic metal wedge but can be obtained for the parabolic metal groove as standing wave solutions indicated by the even and odd symmetries.
本文描述了抛物柱面几何结构中的等离子体模式,作为前一篇论文(《物理学报A》42:185401)的理论补充,前一篇论文考虑了圆形抛物面几何结构中的模式。为了识别抛物柱面几何结构中的等离子体模式,通过使用准变量分离结合微扰方法求解抛物柱面坐标下磁场的波动方程,研究了表面等离激元极化激元的解析解。对零阶微扰方程的研究表明,抛物金属楔不存在解,但对于抛物金属槽可以得到解,如由奇偶对称性所示的驻波解。