Suppr超能文献

脂肪来源干细胞在周围神经再生中的应用现状进展

Current progress in use of adipose derived stem cells in peripheral nerve regeneration.

作者信息

Zack-Williams Shomari Dl, Butler Peter E, Kalaskar Deepak M

机构信息

Shomari DL Zack-Williams, Peter E Butler, Deepak M Kalaskar, Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, WC1E 6BT London, United Kingdom.

出版信息

World J Stem Cells. 2015 Jan 26;7(1):51-64. doi: 10.4252/wjsc.v7.i1.51.

Abstract

Unlike central nervous system neurons; those in the peripheral nervous system have the potential for full regeneration after injury. Following injury, recovery is controlled by schwann cells which replicate and modulate the subsequent immune response. The level of nerve recovery is strongly linked to the severity of the initial injury despite the significant advancements in imaging and surgical techniques. Multiple experimental models have been used with varying successes to augment the natural regenerative processes which occur following nerve injury. Stem cell therapy in peripheral nerve injury may be an important future intervention to improve the best attainable clinical results. In particular adipose derived stem cells (ADSCs) are multipotent mesenchymal stem cells similar to bone marrow derived stem cells, which are thought to have neurotrophic properties and the ability to differentiate into multiple lineages. They are ubiquitous within adipose tissue; they can form many structures resembling the mature adult peripheral nervous system. Following early in vitro work; multiple small and large animal in vivo models have been used in conjunction with conduits, autografts and allografts to successfully bridge the peripheral nerve gap. Some of the ADSC related neuroprotective and regenerative properties have been elucidated however much work remains before a model can be used successfully in human peripheral nerve injury (PNI). This review aims to provide a detailed overview of progress made in the use of ADSC in PNI, with discussion on the role of a tissue engineered approach for PNI repair.

摘要

与中枢神经系统神经元不同,外周神经系统中的神经元在受伤后具有完全再生的潜力。受伤后,恢复过程由雪旺细胞控制,雪旺细胞会进行复制并调节随后的免疫反应。尽管成像和手术技术取得了重大进展,但神经恢复的程度与初始损伤的严重程度密切相关。人们使用了多种实验模型,取得的成功程度各不相同,以增强神经损伤后发生的自然再生过程。外周神经损伤的干细胞治疗可能是未来一项重要的干预措施,以改善可达到的最佳临床效果。特别是脂肪来源的干细胞(ADSCs)是多能间充质干细胞,类似于骨髓来源的干细胞,被认为具有神经营养特性和分化为多种谱系的能力。它们在脂肪组织中无处不在;它们可以形成许多类似于成熟成人外周神经系统的结构。在早期的体外研究之后,多种小型和大型动物体内模型已与导管、自体移植和同种异体移植结合使用,成功地桥接了外周神经间隙。一些与ADSC相关的神经保护和再生特性已经得到阐明,然而,在将该模型成功应用于人类外周神经损伤(PNI)之前,仍有许多工作要做。本综述旨在详细概述ADSC在PNI应用方面取得的进展,并讨论组织工程方法在PNI修复中的作用。

相似文献

1
Current progress in use of adipose derived stem cells in peripheral nerve regeneration.
World J Stem Cells. 2015 Jan 26;7(1):51-64. doi: 10.4252/wjsc.v7.i1.51.
2
Adult Stem Cell-Based Strategies for Peripheral Nerve Regeneration.
Adv Exp Med Biol. 2018;1119:41-71. doi: 10.1007/5584_2018_254.
3
Augmenting Peripheral Nerve Regeneration with Adipose-Derived Stem Cells.
Stem Cell Rev Rep. 2022 Feb;18(2):544-558. doi: 10.1007/s12015-021-10236-5. Epub 2021 Aug 20.
5
Recellularized nerve allografts with differentiated mesenchymal stem cells promote peripheral nerve regeneration.
Neurosci Lett. 2012 Apr 11;514(1):96-101. doi: 10.1016/j.neulet.2012.02.066. Epub 2012 Mar 3.
6
Transplantation of adipose-derived stem cells for peripheral nerve repair.
Int J Mol Med. 2011 Oct;28(4):565-72. doi: 10.3892/ijmm.2011.725. Epub 2011 Jun 17.
7
Adipose derived stem cells for the peripheral nerve regeneration: review of techniques and clinical implications.
J Pak Med Assoc. 2023 Feb;73(Suppl 1)(2):S148-S154. doi: 10.47391/JPMA.AKUS-24.
8
Nerve repair with adipose-derived stem cells protects dorsal root ganglia neurons from apoptosis.
Neuroscience. 2011 Dec 29;199:515-22. doi: 10.1016/j.neuroscience.2011.09.064. Epub 2011 Oct 6.
9
Therapeutic effects of nerve leachate-treated adipose-derived mesenchymal stem cells on rat sciatic nerve injury.
Exp Ther Med. 2020 Jan;19(1):223-231. doi: 10.3892/etm.2019.8203. Epub 2019 Nov 15.
10
Engineered neural tissue with Schwann cell differentiated human dental pulp stem cells: potential for peripheral nerve repair?
J Tissue Eng Regen Med. 2017 Dec;11(12):3362-3372. doi: 10.1002/term.2249. Epub 2017 Jan 4.

引用本文的文献

1
Challenges and Advances in Peripheral Nerve Tissue Engineering Critical Factors Affecting Nerve Regeneration.
J Tissue Eng Regen Med. 2024 Sep 11;2024:8868411. doi: 10.1155/2024/8868411. eCollection 2024.
2
Unraveling the immune system's role in peripheral nerve regeneration: a pathway to enhanced healing.
Front Immunol. 2025 Feb 21;16:1540199. doi: 10.3389/fimmu.2025.1540199. eCollection 2025.
3
Biological conduits based on spider silk for reconstruction of extended nerve defects.
Innov Surg Sci. 2024 Jul 19;9(3):133-142. doi: 10.1515/iss-2023-0050. eCollection 2024 Sep.
4
ADSCs encapsulated in Gelatin methacrylate substrate promotes the repair of peripheral nerve injury by SIRT6/PGC-1α pathway.
Regen Ther. 2024 Aug 30;26:671-682. doi: 10.1016/j.reth.2024.08.018. eCollection 2024 Jun.
5
Recent perspectives on the synergy of mesenchymal stem cells with micro/nano strategies in peripheral nerve regeneration-a review.
Front Bioeng Biotechnol. 2024 Jul 10;12:1401512. doi: 10.3389/fbioe.2024.1401512. eCollection 2024.
6
Biological characteristics of tissue engineered-nerve grafts enhancing peripheral nerve regeneration.
Stem Cell Res Ther. 2024 Jul 18;15(1):215. doi: 10.1186/s13287-024-03827-9.
7
Early Intensive Neurorehabilitation in Traumatic Peripheral Nerve Injury-State of the Art.
Animals (Basel). 2024 Mar 13;14(6):884. doi: 10.3390/ani14060884.
8
Cell-free therapy based on extracellular vesicles: a promising therapeutic strategy for peripheral nerve injury.
Stem Cell Res Ther. 2023 Sep 19;14(1):254. doi: 10.1186/s13287-023-03467-5.
9
Regenerative Strategies in Treatment of Peripheral Nerve Injuries in Different Animal Models.
Tissue Eng Regen Med. 2023 Oct;20(6):839-877. doi: 10.1007/s13770-023-00559-4. Epub 2023 Aug 12.

本文引用的文献

2
Exploring a new therapy for diabetic polyneuropathy - the application of stem cell transplantation.
Front Endocrinol (Lausanne). 2014 Apr 9;5:45. doi: 10.3389/fendo.2014.00045. eCollection 2014.
3
Intracutaneously injected human adipose tissue-derived stem cells in a mouse model stay at the site of injection.
J Plast Reconstr Aesthet Surg. 2014 Jun;67(6):844-50. doi: 10.1016/j.bjps.2014.02.021. Epub 2014 Mar 5.
4
Electrical conditioning of adipose-derived stem cells in a multi-chamber culture platform.
Biotechnol Bioeng. 2014 Jul;111(7):1452-63. doi: 10.1002/bit.25201. Epub 2014 Feb 17.
5
Injury of the Inferior Alveolar Nerve during Implant Placement: a Literature Review.
J Oral Maxillofac Res. 2011 Apr 1;2(1):e1. doi: 10.5037/jomr.2011.2101. eCollection 2011.
7
"Strategic sequences" in adipose-derived stem cell nerve regeneration.
Microsurgery. 2014 May;34(4):324-30. doi: 10.1002/micr.22219. Epub 2013 Dec 27.
8
Isolation of adipose-derived stem cells: a comparison among different methods.
Biotechnol Lett. 2014 Apr;36(4):693-702. doi: 10.1007/s10529-013-1425-x. Epub 2013 Dec 10.
9
Stimulating the neurotrophic and angiogenic properties of human adipose-derived stem cells enhances nerve repair.
Stem Cells Dev. 2014 Apr 1;23(7):741-54. doi: 10.1089/scd.2013.0396. Epub 2013 Nov 22.
10
Manual isolation of adipose-derived stem cells from human lipoaspirates.
J Vis Exp. 2013 Sep 26(79):e50585. doi: 10.3791/50585.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验