Liu Yuan-Hung, Peng Kai-Yen, Chiu Yu-Wei, Ho Yi-Lwun, Wang Yao-Horng, Shun Chia-Tung, Huang Shih-Yun, Lin Yi-Shuan, de Vries Antoine A F, Pijnappels Daniël A, Lee Nan-Ting, Yen B Linju, Yen Men-Luh
Section of Cardiology, Cardiovascular Center, Far Eastern Memorial Hospital, Pan Chiao, New Taipei City, Taiwan.
Cell Transplant. 2015;24(12):2463-78. doi: 10.3727/096368915X687200. Epub 2015 Jan 23.
Cardiovascular disease is the leading cause of death globally, and stem cell therapy remains one of the most promising strategies for regeneration or repair of the damaged heart. We report that human placenta-derived multipotent cells (hPDMCs) can modulate cardiac injury in small and large animal models of myocardial ischemia (MI) and elucidate the mechanisms involved. We found that hPDMCs can undergo in vitro cardiomyogenic differentiation when cocultured with mouse neonatal cardiomyocytes. Moreover, hPDMCs exert strong proangiogenic responses in vitro toward human endothelial cells mediated by secretion of hepatocyte growth factor, growth-regulated oncogene-α, and interleukin-8. To test the in vivo relevance of these results, small and large animal models of acute MI were induced in mice and minipigs, respectively, by permanent left anterior descending (LAD) artery ligation, followed by hPDMC or culture medium-only implantation with follow-up for up to 8 weeks. Transplantation of hPDMCs into mouse heart post-acute MI induction improved left ventricular function, with significantly enhanced vascularity in the cell-treated group. Furthermore, in minipigs post-acute MI induction, hPDMC transplantation significantly improved myocardial contractility compared to the control group (p = 0.016) at 8 weeks postinjury. In addition, tissue analysis confirmed that hPDMC transplantation induced increased vascularity, cardiomyogenic differentiation, and antiapoptotic effects. Our findings offer evidence that hPDMCs can modulate cardiac injury in both small and large animal models, possibly through proangiogenesis, cardiomyogenesis, and suppression of cardiomyocyte apoptosis. Our study offers mechanistic insights and preclinical evidence on using hPDMCs as a therapeutic strategy to treat severe cardiovascular diseases.
心血管疾病是全球主要的死亡原因,而干细胞疗法仍然是受损心脏再生或修复最有前景的策略之一。我们报告称,人胎盘来源的多能细胞(hPDMCs)可在心肌缺血(MI)的小型和大型动物模型中调节心脏损伤,并阐明其中涉及的机制。我们发现,hPDMCs与小鼠新生心肌细胞共培养时可在体外发生心肌分化。此外,hPDMCs在体外通过分泌肝细胞生长因子、生长调节致癌基因-α和白细胞介素-8对人内皮细胞产生强烈的促血管生成反应。为了测试这些结果在体内的相关性,分别通过永久性结扎左前降支(LAD)动脉在小鼠和小型猪中诱导急性心肌梗死的小型和大型动物模型,随后植入hPDMCs或仅植入培养基,并随访长达8周。在急性心肌梗死诱导后将hPDMCs移植到小鼠心脏中可改善左心室功能,细胞治疗组的血管生成显著增强。此外,在急性心肌梗死诱导后的小型猪中,与对照组相比,hPDMCs移植在损伤后8周时显著改善了心肌收缩力(p = 0.016)。此外,组织分析证实hPDMCs移植可诱导血管生成增加、心肌分化和抗凋亡作用。我们的研究结果表明,hPDMCs可在小型和大型动物模型中调节心脏损伤,可能是通过促血管生成、心肌生成和抑制心肌细胞凋亡实现的。我们的研究为将hPDMCs用作治疗严重心血管疾病的治疗策略提供了机制见解和临床前证据。