Pasha Hosseinbor A, Chung Moo K, Wu Yu-Chien, Bendlin Barbara B, Alexander Andrew L
Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI, USA.
Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI, USA; Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA.
Med Image Anal. 2015 Apr;21(1):15-28. doi: 10.1016/j.media.2014.11.013. Epub 2015 Jan 3.
3D q-space can be viewed as the surface of a 4D hypersphere. In this paper, we seek to develop a 4D hyperspherical interpretation of q-space by projecting it onto a hypersphere and subsequently modeling the q-space signal via 4D hyperspherical harmonics (HSH). Using this orthonormal basis, we derive several well-established q-space indices and numerically estimate the diffusion orientation distribution function (dODF). We also derive the integral transform describing the relationship between the diffusion signal and propagator on a hypersphere. Most importantly, we will demonstrate that for hybrid diffusion imaging (HYDI) acquisitions low order linear expansion of the HSH basis is sufficient to characterize diffusion in neural tissue. In fact, the HSH basis achieves comparable signal and better dODF reconstructions than other well-established methods, such as Bessel Fourier orientation reconstruction (BFOR), using fewer fitting parameters. All in all, this work provides a new way of looking at q-space.
三维q空间可被视为一个四维超球面的表面。在本文中,我们试图通过将q空间投影到一个超球面上,并随后通过四维超球谐函数(HSH)对q空间信号进行建模,来开发一种对q空间的四维超球面解释。使用这个正交基,我们推导了几个已确立的q空间指数,并对扩散方向分布函数(dODF)进行了数值估计。我们还推导了描述超球面上扩散信号与传播子之间关系的积分变换。最重要的是,我们将证明,对于混合扩散成像(HYDI)采集,HSH基的低阶线性展开足以表征神经组织中的扩散。事实上,与其他已确立的方法(如贝塞尔傅里叶方向重建(BFOR))相比,HSH基使用更少的拟合参数就能实现可比的信号和更好的dODF重建。总而言之,这项工作提供了一种看待q空间的新方法。