Suppr超能文献

二十面体上的反铁磁海森堡模型:连通性的影响以及从经典极限到量子极限的转变。

Antiferromagnetic Heisenberg model on the icosahedron: influence of connectivity and the transition from the classical to the quantum limit.

作者信息

Konstantinidis N P

机构信息

Max Planck Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany.

出版信息

J Phys Condens Matter. 2015 Feb 25;27(7):076001. doi: 10.1088/0953-8984/27/7/076001. Epub 2015 Jan 28.

Abstract

The antiferromagnetic Heisenberg model on the icosahedron presents unconventional properties at the classical and quantum level, which originate in the frustrated nature of the interactions between the spins. Here we examine the importance of the connectivity of the icosahedron for the appearance of a magnetization discontinuity as a function of an external field which separates two families of lowest energy configurations. We also investigate the transition from the classical to the quantum limit. The influence of connectivity on the magnetic properties is revealed by considering the cluster as being made up of a closed strip of a triangular lattice with two additional spins attached. The classical magnetization discontinuity is shown to evolve continuously from the discontinuity effected by these two spins when they are uncoupled to the cluster. In the second part the transition from the classical to the quantum limit is examined by focusing on the low energy spectrum, taking fully into account the spatial and the spin symmetry of the model in the characterization of the states. A symmetry analysis of the highly degenerate lowest energy classical manifold identifies as its direct fingerprint the low energy quantum states for spin magnitude as low as s = 1, with the latter following a tower of states behavior which relates to the icosahedron having a structure reminiscent of a depleted triangular lattice. The classical character of the AHM for small s is also detected on the ground state energy and correlation functions. On the other hand the classical magnetization discontinuity in a field eventually disappears for small s, after a weak reentrant behavior.

摘要

二十面体上的反铁磁海森堡模型在经典和量子层面都呈现出非常规性质,这源于自旋间相互作用的受挫本质。在此,我们研究二十面体的连通性对于作为分离两个最低能量构型族的外场函数的磁化强度不连续性出现的重要性。我们还研究从经典极限到量子极限的转变。通过将团簇视为由具有两个附加自旋的三角形晶格的封闭条带组成,揭示了连通性对磁性质的影响。经典磁化强度不连续性被证明是从这两个自旋与团簇未耦合时所产生的不连续性连续演化而来的。在第二部分中,通过关注低能谱来研究从经典极限到量子极限的转变,在表征态时充分考虑模型的空间和自旋对称性。对高度简并的最低能量经典流形的对称性分析将自旋大小低至(s = 1)的低能量子态确定为其直接特征,后者遵循与具有让人联想到耗尽三角形晶格结构的二十面体相关的一系列态的行为。对于小(s),反铁磁海森堡模型的经典特征也在基态能量和关联函数中被检测到。另一方面,对于小(s),经过微弱的再入行为后,场中的经典磁化强度不连续性最终消失。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验