Suppr超能文献

抗氧化剂治疗不能改善小鼠骨骼肌纤维疲劳刺激后的力量恢复。

Antioxidant treatments do not improve force recovery after fatiguing stimulation of mouse skeletal muscle fibres.

作者信息

Cheng Arthur J, Bruton Joseph D, Lanner Johanna T, Westerblad Håkan

机构信息

Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden.

出版信息

J Physiol. 2015 Jan 15;593(2):457-72. doi: 10.1113/jphysiol.2014.279398. Epub 2014 Dec 11.

Abstract

The contractile performance of skeletal muscle declines during intense activities, i.e. fatigue develops. Fatigued muscle can enter a state of prolonged low-frequency force depression (PLFFD). PLFFD can be due to decreased tetanic free cytosolic [Ca(2+) ] ([Ca(2+) ]i ) and/or decreased myofibrillar Ca(2+) sensitivity. Increases in reactive oxygen and nitrogen species (ROS/RNS) may contribute to fatigue-induced force reductions. We studied whether pharmacological ROS/RNS inhibition delays fatigue and/or counteracts the development of PLFFD. Mechanically isolated mouse fast-twitch fibres were fatigued by sixty 150 ms, 70 Hz tetani given every 1 s. Experiments were performed in standard Tyrode solution (control) or in the presence of: NADPH oxidase (NOX) 2 inhibitor (gp91ds-tat); NOX4 inhibitor (GKT137831); mitochondria-targeted antioxidant (SS-31); nitric oxide synthase (NOS) inhibitor (l-NAME); the general antioxidant N-acetylcysteine (NAC); a cocktail of SS-31, l-NAME and NAC. Spatially and temporally averaged [Ca(2+) ]i and peak force were reduced by ∼20% and ∼70% at the end of fatiguing stimulation, respectively, with no marked differences between groups. PLFFD was similar in all groups, with 30 Hz force being decreased by ∼60% at 30 min of recovery. PLFFD was mostly due to decreased tetanic [Ca(2+) ]i in control fibres and in the presence of NOX2 or NOX4 inhibitors. Conversely, in fibres exposed to SS-31 or the anti ROS/RNS cocktail, tetanic [Ca(2+) ]i was not decreased during recovery so PLFFD was only caused by decreased myofibrillar Ca(2+) sensitivity. The cocktail also increased resting [Ca(2+) ]i and ultimately caused cell death. In conclusion, ROS/RNS-neutralizing compounds did not counteract the force decline during or after induction of fatigue.

摘要

在剧烈活动期间,骨骼肌的收缩性能会下降,即出现疲劳。疲劳的肌肉会进入长时间低频力抑制(PLFFD)状态。PLFFD可能是由于强直收缩时游离胞质[Ca(2+)]([Ca(2+)]i)降低和/或肌原纤维Ca(2+)敏感性降低所致。活性氧和氮物质(ROS/RNS)的增加可能导致疲劳诱导的力下降。我们研究了药理学上抑制ROS/RNS是否能延缓疲劳和/或对抗PLFFD的发展。通过每隔1秒给予60次150毫秒、70赫兹的强直刺激使机械分离的小鼠快肌纤维疲劳。实验在标准台氏液(对照)中或在以下物质存在的情况下进行:NADPH氧化酶(NOX)2抑制剂(gp91ds-tat);NOX4抑制剂(GKT137831);线粒体靶向抗氧化剂(SS-31);一氧化氮合酶(NOS)抑制剂(l-NAME);通用抗氧化剂N-乙酰半胱氨酸(NAC);SS-31、l-NAME和NAC的混合物。在疲劳刺激结束时,空间和时间平均[Ca(2+)]i和峰值力分别降低了约20%和约70%,各实验组之间无显著差异。所有组的PLFFD相似,在恢复30分钟时,30赫兹的力下降了约60%。在对照纤维以及存在NOX2或NOX4抑制剂的情况下,PLFFD主要是由于强直收缩时[Ca(2+)]i降低所致。相反,在暴露于SS-31或抗ROS/RNS混合物的纤维中,恢复过程中强直收缩时[Ca(2+)]i没有降低,因此PLFFD仅由肌原纤维Ca(2+)敏感性降低引起。该混合物还增加了静息[Ca(2+)]i并最终导致细胞死亡。总之,ROS/RNS中和化合物并不能对抗疲劳诱导期间或之后的力下降。

相似文献

1
Antioxidant treatments do not improve force recovery after fatiguing stimulation of mouse skeletal muscle fibres.
J Physiol. 2015 Jan 15;593(2):457-72. doi: 10.1113/jphysiol.2014.279398. Epub 2014 Dec 11.
3
Fast skeletal muscle troponin activator CK-2066260 mitigates skeletal muscle weakness independently of the underlying cause.
J Cachexia Sarcopenia Muscle. 2020 Dec;11(6):1747-1757. doi: 10.1002/jcsm.12624. Epub 2020 Sep 21.
6
Reactive oxygen/nitrogen species and contractile function in skeletal muscle during fatigue and recovery.
J Physiol. 2016 Sep 15;594(18):5149-60. doi: 10.1113/JP270650. Epub 2016 Mar 20.
7
Treatment with EUK-134 improves sarcoplasmic reticulum Ca release but not myofibrillar Ca sensitivity after fatiguing contraction of rat fast-twitch muscle.
Am J Physiol Regul Integr Comp Physiol. 2019 May 1;316(5):R543-R551. doi: 10.1152/ajpregu.00387.2018. Epub 2019 Feb 22.
8
Incubation with sodium nitrite attenuates fatigue development in intact single mouse fibres at physiological .
J Physiol. 2019 Nov;597(22):5429-5443. doi: 10.1113/JP278494. Epub 2019 Oct 30.
10
The role of elevations in intracellular [Ca2+] in the development of low frequency fatigue in mouse single muscle fibres.
J Physiol. 1996 Mar 15;491 ( Pt 3)(Pt 3):813-24. doi: 10.1113/jphysiol.1996.sp021259.

引用本文的文献

2
Stable oxidative posttranslational modifications alter the gating properties of RyR1.
J Gen Physiol. 2024 Dec 2;156(12). doi: 10.1085/jgp.202313515. Epub 2024 Nov 5.
5
From amino-acid to disease: the effects of oxidation on actin-myosin interactions in muscle.
J Muscle Res Cell Motil. 2023 Dec;44(4):225-254. doi: 10.1007/s10974-023-09658-0. Epub 2023 Oct 8.
9
Mechanisms of eccentric contraction-induced muscle damage and nutritional supplementations for mitigating it.
J Muscle Res Cell Motil. 2022 Sep;43(3):147-156. doi: 10.1007/s10974-022-09625-1. Epub 2022 Jul 19.

本文引用的文献

1
Subcellular distribution of glycogen and decreased tetanic Ca2+ in fatigued single intact mouse muscle fibres.
J Physiol. 2014 May 1;592(9):2003-12. doi: 10.1113/jphysiol.2014.271528. Epub 2014 Mar 3.
2
3
Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement.
Antioxid Redox Signal. 2015 Aug 10;23(5):406-27. doi: 10.1089/ars.2013.5814. Epub 2014 Feb 26.
4
Redefining the major contributors to superoxide production in contracting skeletal muscle. The role of NAD(P)H oxidases.
Free Radic Res. 2014 Jan;48(1):12-29. doi: 10.3109/10715762.2013.830718. Epub 2013 Oct 7.
5
Reactive oxygen species: impact on skeletal muscle.
Compr Physiol. 2011 Apr;1(2):941-69. doi: 10.1002/cphy.c100054.
6
Real-time imaging of NADPH oxidase activity in living cells using a novel fluorescent protein reporter.
PLoS One. 2013 May 21;8(5):e63989. doi: 10.1371/journal.pone.0063989. Print 2013.
8
TLR4 as receptor for HMGB1 induced muscle dysfunction in myositis.
Ann Rheum Dis. 2013 Aug;72(8):1390-9. doi: 10.1136/annrheumdis-2012-202207. Epub 2012 Nov 12.
10
Mitochondrial antioxidative capacity regulates muscle glucose uptake in the conscious mouse: effect of exercise and diet.
J Appl Physiol (1985). 2012 Oct 15;113(8):1173-83. doi: 10.1152/japplphysiol.01344.2011. Epub 2012 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验