Suppr超能文献

使用囚禁离子检验洛伦兹对称性的电子迈克耳孙-莫雷模拟实验。

Michelson-Morley analogue for electrons using trapped ions to test Lorentz symmetry.

机构信息

1] Department of Physics, University of California, Berkeley, California 94720, USA [2] Quantum Metrology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan.

Department of Physics, University of California, Berkeley, California 94720, USA.

出版信息

Nature. 2015 Jan 29;517(7536):592-5. doi: 10.1038/nature14091.

Abstract

All evidence so far suggests that the absolute spatial orientation of an experiment never affects its outcome. This is reflected in the standard model of particle physics by requiring all particles and fields to be invariant under Lorentz transformations. The best-known tests of this important cornerstone of physics are Michelson-Morley-type experiments verifying the isotropy of the speed of light. For matter, Hughes-Drever-type experiments test whether the kinetic energy of particles is independent of the direction of their velocity, that is, whether their dispersion relations are isotropic. To provide more guidance for physics beyond the standard model, refined experimental verifications of Lorentz symmetry are desirable. Here we search for violation of Lorentz symmetry for electrons by performing an electronic analogue of a Michelson-Morley experiment. We split an electron wave packet bound inside a calcium ion into two parts with different orientations and recombine them after a time evolution of 95 milliseconds. As the Earth rotates, the absolute spatial orientation of the two parts of the wave packet changes, and anisotropies in the electron dispersion will modify the phase of the interference signal. To remove noise, we prepare a pair of calcium ions in a superposition of two decoherence-free states, thereby rejecting magnetic field fluctuations common to both ions. After a 23-hour measurement, we find a limit of h × 11 millihertz (h is Planck's constant) on the energy variations, verifying the isotropy of the electron's dispersion relation at the level of one part in 10(18), a 100-fold improvement on previous work. Alternatively, we can interpret our result as testing the rotational invariance of the Coulomb potential. Assuming that Lorentz symmetry holds for electrons and that the photon dispersion relation governs the Coulomb force, we obtain a fivefold-improved limit on anisotropies in the speed of light. Our result probes Lorentz symmetry violation at levels comparable to the ratio between the electroweak and Planck energy scales. Our experiment demonstrates the potential of quantum information techniques in the search for physics beyond the standard model.

摘要

迄今为止的所有证据都表明,实验的绝对空间方向从不影响其结果。这在粒子物理学的标准模型中得到体现,要求所有粒子和场在洛伦兹变换下保持不变。对物理这一重要基石的最著名检验是迈克耳孙-莫雷类型的实验,这些实验验证了光速的各向同性。对于物质,休斯-德雷弗类型的实验检验粒子的动能是否独立于它们的速度方向,也就是说,它们的色散关系是否各向同性。为了为超越标准模型的物理学提供更多指导,需要对洛伦兹对称性进行更精细的实验验证。在这里,我们通过执行迈克耳孙-莫雷实验的电子模拟来寻找电子对洛伦兹对称性的违反。我们将束缚在钙离子内的电子波包分裂成两个具有不同取向的部分,并在 95 毫秒的时间演化后重新组合它们。随着地球的旋转,波包的两部分的绝对空间方向发生变化,电子的色散各向异性将改变干涉信号的相位。为了去除噪声,我们在两个退相干自由态的叠加中准备一对钙离子,从而排除了两个离子共有的磁场波动。经过 23 小时的测量,我们在能量变化上限制了 h×11 毫赫兹(h 是普朗克常数),在电子色散关系的各向同性方面达到了 10 的 18 次方之一的水平,比以前的工作提高了 100 倍。或者,我们可以将我们的结果解释为检验库仑势的旋转不变性。假设洛伦兹对称性适用于电子,并且光子色散关系支配库仑力,我们在光速各向异性方面获得了五倍的改进限制。我们的结果在与电弱和普朗克能量尺度之比相当的水平上探测到了洛伦兹对称性的破坏。我们的实验展示了量子信息技术在寻找超越标准模型的物理学中的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验