Suppr超能文献

使用多维背包问题控制选择超启发式框架中的交叉案例研究。

A Case Study of Controlling Crossover in a Selection Hyper-heuristic Framework Using the Multidimensional Knapsack Problem.

机构信息

School of Computer Science, University of Nottingham, Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK

Computing Science and Mathematics, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland

出版信息

Evol Comput. 2016 Spring;24(1):113-41. doi: 10.1162/EVCO_a_00145. Epub 2015 Jan 30.

Abstract

Hyper-heuristics are high-level methodologies for solving complex problems that operate on a search space of heuristics. In a selection hyper-heuristic framework, a heuristic is chosen from an existing set of low-level heuristics and applied to the current solution to produce a new solution at each point in the search. The use of crossover low-level heuristics is possible in an increasing number of general-purpose hyper-heuristic tools such as HyFlex and Hyperion. However, little work has been undertaken to assess how best to utilise it. Since a single-point search hyper-heuristic operates on a single candidate solution, and two candidate solutions are required for crossover, a mechanism is required to control the choice of the other solution. The frameworks we propose maintain a list of potential solutions for use in crossover. We investigate the use of such lists at two conceptual levels. First, crossover is controlled at the hyper-heuristic level where no problem-specific information is required. Second, it is controlled at the problem domain level where problem-specific information is used to produce good-quality solutions to use in crossover. A number of selection hyper-heuristics are compared using these frameworks over three benchmark libraries with varying properties for an NP-hard optimisation problem: the multidimensional 0-1 knapsack problem. It is shown that allowing crossover to be managed at the domain level outperforms managing crossover at the hyper-heuristic level in this problem domain.

摘要

超启发式方法是一种解决复杂问题的高级方法,它在启发式搜索空间上进行操作。在选择超启发式框架中,从现有的一组低层次启发式中选择一个启发式,并将其应用于当前的解决方案,以在搜索的每个点生成新的解决方案。在越来越多的通用超启发式工具(如 HyFlex 和 Hyperion)中,都有可能使用交叉低层次启发式。然而,很少有工作致力于评估如何最好地利用它。由于单点搜索超启发式在单个候选解决方案上运行,并且交叉需要两个候选解决方案,因此需要一种机制来控制另一个解决方案的选择。我们提出的框架为交叉保留了潜在解决方案的列表。我们在两个概念层面上研究了此类列表的使用。首先,在不需要特定于问题的信息的超启发式级别控制交叉。其次,在使用特定于问题的信息生成用于交叉的高质量解决方案的问题域级别控制交叉。使用这些框架在三个具有不同属性的基准库上比较了多种选择超启发式方法,以解决一个 NP 难优化问题:多维 0-1 背包问题。结果表明,在这个问题领域中,允许交叉在域级别进行管理优于在超启发式级别进行管理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验