Miller Helen, Zhou Zhaokun, Wollman Adam J M, Leake Mark C
Biological Physical Sciences Institute (BPSI), Departments of Physics and Biology, University of York, York YO10 5DD, United Kingdom.
Biological Physical Sciences Institute (BPSI), Departments of Physics and Biology, University of York, York YO10 5DD, United Kingdom.
Methods. 2015 Oct 15;88:81-8. doi: 10.1016/j.ymeth.2015.01.010. Epub 2015 Jan 27.
As proof-of-principle for generating superresolution structural information from DNA we applied a method of localization microscopy utilizing photoblinking comparing intercalating dye YOYO-1 against minor groove binding dye SYTO-13, using a bespoke multicolor single-molecule fluorescence microscope. We used a full-length ∼49 kbp λ DNA construct possessing oligo inserts at either terminus allowing conjugation of digoxigenin and biotin at opposite ends for tethering to a glass coverslip surface and paramagnetic microsphere respectively. We observed stochastic DNA-bound dye photoactivity consistent with dye photoblinking as opposed to binding/unbinding events, evidenced through both discrete simulations and continuum kinetics analysis. We analyzed dye photoblinking images of immobilized DNA molecules using superresolution reconstruction software from two existing packages, rainSTORM and QuickPALM, and compared the results against our own novel home-written software called ADEMS code. ADEMS code generated lateral localization precision values of 30-40 nm and 60-70 nm for YOYO-1 and SYTO-13 respectively at video-rate sampling, similar to rainSTORM, running more slowly than rainSTORM and QuickPALM algorithms but having a complementary capability over both in generating automated centroid distribution and cluster analyses. Our imaging system allows us to observe dynamic topological changes to single molecules of DNA in real-time, such as rapid molecular snapping events. This will facilitate visualization of fluorescently-labeled DNA molecules conjugated to a magnetic bead in future experiments involving newly developed magneto-optical tweezers combined with superresolution microscopy.
作为从DNA生成超分辨率结构信息的原理验证,我们应用了一种定位显微镜方法,利用光闪烁,将嵌入染料YOYO-1与小沟结合染料SYTO-13进行比较,使用定制的多色单分子荧光显微镜。我们使用了一个全长约49 kbp的λ DNA构建体,其两端具有寡核苷酸插入片段,允许在相对端分别连接地高辛配基和生物素,以便分别 tether 到玻璃盖玻片表面和顺磁性微球上。我们观察到与染料光闪烁一致的随机DNA结合染料光活性,而不是结合/解离事件,这通过离散模拟和连续动力学分析得到了证明。我们使用来自两个现有软件包rainSTORM和QuickPALM的超分辨率重建软件分析了固定化DNA分子的染料光闪烁图像,并将结果与我们自己新编写的名为ADEMS代码的软件进行了比较。在视频速率采样下,ADEMS代码分别为YOYO-1和SYTO-13生成了30 - 40 nm和60 - 70 nm的横向定位精度值,与rainSTORM相似,运行速度比rainSTORM和QuickPALM算法慢,但在生成自动质心分布和聚类分析方面具有互补能力。我们的成像系统使我们能够实时观察DNA单分子的动态拓扑变化,例如快速的分子捕捉事件。这将有助于在未来涉及新开发的磁光镊子与超分辨率显微镜相结合的实验中,可视化与磁珠共轭的荧光标记DNA分子。