Suppr超能文献

转录谱分析在区分住院成人细菌性与病毒性下呼吸道感染方面优于降钙素原。

Superiority of transcriptional profiling over procalcitonin for distinguishing bacterial from viral lower respiratory tract infections in hospitalized adults.

作者信息

Suarez Nicolas M, Bunsow Eleonora, Falsey Ann R, Walsh Edward E, Mejias Asuncion, Ramilo Octavio

机构信息

Center for Vaccines and Immunity Division of Pediatric Infectious Diseases, The Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus.

Department of Medicine, University of Rochester Rochester General Hospital, New York.

出版信息

J Infect Dis. 2015 Jul 15;212(2):213-22. doi: 10.1093/infdis/jiv047. Epub 2015 Jan 29.

Abstract

BACKGROUND

Distinguishing between bacterial and viral lower respiratory tract infection (LRTI) remains challenging. Transcriptional profiling is a promising tool for improving diagnosis in LRTI.

METHODS

We performed whole blood transcriptional analysis in 118 patients (median age [interquartile range], 61 [50-76] years) hospitalized with LRTI and 40 age-matched healthy controls (median age, 60 [46-70] years). We applied class comparisons, modular analysis, and class prediction algorithms to identify and validate diagnostic biosignatures for bacterial and viral LRTI.

RESULTS

Patients were classified as having bacterial (n = 22), viral (n = 71), or bacterial-viral LRTI (n = 25) based on comprehensive microbiologic testing. Compared with healthy controls, statistical group comparisons (P < .01; multiple-test corrections) identified 3376 differentially expressed genes in patients with bacterial LRTI, 2391 in viral LRTI, and 2628 in bacterial-viral LRTI. Patients with bacterial LRTI showed significant overexpression of inflammation and neutrophil genes (bacterial > bacterial-viral > viral), and those with viral LRTI displayed significantly greater overexpression of interferon genes (viral > bacterial-viral > bacterial). The K-nearest neighbors algorithm identified 10 classifier genes that discriminated between bacterial and viral LRTI with a 95% sensitivity (95% confidence interval, 77%-100%) and 92% specificity (77%-98%), compared with a sensitivity of 38% (18%-62%) and a specificity of 91% (76%-98%) for procalcitonin.

CONCLUSIONS

Transcriptional profiling is a helpful tool for diagnosis of LRTI.

摘要

背景

区分细菌性和病毒性下呼吸道感染(LRTI)仍然具有挑战性。转录谱分析是改善LRTI诊断的一种有前景的工具。

方法

我们对118例因LRTI住院的患者(中位年龄[四分位间距],61[50 - 76]岁)和40例年龄匹配的健康对照者(中位年龄,60[46 - 70]岁)进行了全血转录分析。我们应用类别比较、模块分析和类别预测算法来识别和验证细菌性和病毒性LRTI的诊断生物标志物。

结果

根据全面的微生物检测,患者被分类为患有细菌性(n = 22)、病毒性(n = 71)或细菌性 - 病毒性LRTI(n = 25)。与健康对照者相比,统计学组间比较(P <.01;多重检验校正)发现细菌性LRTI患者中有3376个差异表达基因,病毒性LRTI患者中有2391个,细菌性 - 病毒性LRTI患者中有2628个。细菌性LRTI患者表现出炎症和中性粒细胞基因的显著过表达(细菌性>细菌性 - 病毒性>病毒性),而病毒性LRTI患者则表现出干扰素基因的显著过表达(病毒性>细菌性 - 病毒性>细菌性)。与降钙素原的敏感性为38%(18% - 62%)和特异性为91%(76% - 98%)相比,K近邻算法识别出10个分类基因,可区分细菌性和病毒性LRTI,敏感性为95%(95%置信区间,77% - 100%),特异性为92%(77% - 98%)。

结论

转录谱分析是诊断LRTI的一种有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45ff/4565998/1f8cd7150c42/jiv04701.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验