Braude Jeremy P, Vijayakumar Sarath, Baumgarner Katherine, Laurine Rebecca, Jones Timothy A, Jones Sherri M, Pyott Sonja J
University of North Carolina Wilmington, Department of Biology and Marine Biology, 601 South College Road, Wilmington, NC 28403, USA.
University of Nebraska Lincoln, Department of Special Education and Communication Disorders, 304B Barkley Memorial Center, Lincoln, NE 68583-0738, USA.
Hear Res. 2015 Mar;321:52-64. doi: 10.1016/j.heares.2015.01.008. Epub 2015 Jan 28.
Shank proteins (1-3) are considered the master organizers of glutamatergic postsynaptic densities in the central nervous system, and the genetic deletion of either Shank1, 2, or 3 results in altered composition, form, and strength of glutamatergic postsynapses. To investigate the contribution of Shank proteins to glutamatergic afferent synapses of the inner ear and especially cochlea, we used immunofluorescence and quantitative real time PCR to determine the expression of Shank1, 2, and 3 in the cochlea. Because we found evidence for expression of Shank1 but not 2 and 3, we investigated the morphology, composition, and function of afferent postsynaptic densities from defined tonotopic regions in the cochlea of Shank1(-/-) mice. Using immunofluorescence, we identified subtle changes in the morphology and composition (but not number and localization) of cochlear afferent postsynaptic densities at the lower frequency region (8 kHz) in Shank1(-/-) mice compared to Shank1(+/+) littermates. However, we detected no differences in auditory brainstem responses at matching or higher frequencies. We also identified Shank1 in the vestibular afferent postsynaptic densities, but detected no differences in vestibular sensory evoked potentials in Shank1(-/-) mice compared to Shank1(+/+) littermates. This work suggests that Shank proteins play a different role in the development and maintenance of glutamatergic afferent synapses in the inner ear compared to the central nervous system.
支架蛋白(1-3)被认为是中枢神经系统中谷氨酸能突触后致密物的主要组织者,敲除支架蛋白1、2或3中的任何一种都会导致谷氨酸能突触后成分、形态和强度的改变。为了研究支架蛋白对内耳尤其是耳蜗谷氨酸能传入突触的作用,我们使用免疫荧光和定量实时PCR来确定耳蜗中支架蛋白1、2和3的表达。由于我们发现了支架蛋白1表达的证据,但未发现支架蛋白2和3的表达证据,因此我们研究了支架蛋白1基因敲除小鼠耳蜗中特定音频区域传入突触后致密物的形态、组成和功能。通过免疫荧光,我们发现与同窝野生型小鼠相比,支架蛋白1基因敲除小鼠低频区域(8千赫)耳蜗传入突触后致密物在形态和组成上有细微变化(但数量和定位无变化)。然而,我们在匹配频率或更高频率下未检测到听觉脑干反应的差异。我们还在前庭传入突触后致密物中鉴定出了支架蛋白1,但与同窝野生型小鼠相比,未检测到支架蛋白1基因敲除小鼠前庭感觉诱发电位的差异。这项研究表明,与中枢神经系统相比,支架蛋白在内耳谷氨酸能传入突触的发育和维持中发挥着不同的作用。