Suppr超能文献

利用可见/近红外光谱和化学计量学鉴别太空诱变培育的番茄

Discrimination of tomatoes bred by spaceflight mutagenesis using visible/near infrared spectroscopy and chemometrics.

作者信息

Shao Yongni, Xie Chuanqi, Jiang Linjun, Shi Jiahui, Zhu Jiajin, He Yong

机构信息

College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.

Zhejiang Sports Science Research Institute, Hangzhou, China.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2015 Apr 5;140:431-6. doi: 10.1016/j.saa.2015.01.018. Epub 2015 Jan 17.

Abstract

Visible/near infrared spectroscopy (Vis/NIR) based on sensitive wavelengths (SWs) and chemometrics was proposed to discriminate different tomatoes bred by spaceflight mutagenesis from their leafs or fruits (green or mature). The tomato breeds were mutant M1, M2 and their parent. Partial least squares (PLS) analysis and least squares-support vector machine (LS-SVM) were implemented for calibration models. PLS analysis was implemented for calibration models with different wavebands including the visible region (400-700 nm) and the near infrared region (700-1000 nm). The best PLS models were achieved in the visible region for the leaf and green fruit samples and in the near infrared region for the mature fruit samples. Furthermore, different latent variables (4-8 LVs for leafs, 5-9 LVs for green fruits, and 4-9 LVs for mature fruits) were used as inputs of LS-SVM to develop the LV-LS-SVM models with the grid search technique and radial basis function (RBF) kernel. The optimal LV-LS-SVM models were achieved with six LVs for the leaf samples, seven LVs for green fruits, and six LVs for mature fruits, respectively, and they outperformed the PLS models. Moreover, independent component analysis (ICA) was executed to select several SWs based on loading weights. The optimal LS-SVM model was achieved with SWs of 550-560 nm, 562-574 nm, 670-680 nm and 705-71 5 nm for the leaf samples; 548-556 nm, 559-564 nm, 678-685 nm and 962-974 nm for the green fruit samples; and 712-718 nm, 720-729 nm, 968-978 nm and 820-830 nm for the mature fruit samples. All of them had better performance than PLS and LV-LS-SVM, with the parameters of correlation coefficient (rp), root mean square error of prediction (RMSEP) and bias of 0.9792, 0.2632 and 0.0901 based on leaf discrimination, 0.9837, 0.2783 and 0.1758 based on green fruit discrimination, 0.9804, 0.2215 and -0.0035 based on mature fruit discrimination, respectively. The overall results indicated that ICA was an effective way for the selection of SWs, and the Vis/NIR combined with LS-SVM models had the capability to predict the different breeds (mutant M1, mutant M2 and their parent) of tomatoes from leafs and fruits.

摘要

基于敏感波长(SWs)和化学计量学的可见/近红外光谱(Vis/NIR)被用于从叶片或果实(绿色或成熟)中区分通过太空诱变培育的不同番茄品种。番茄品种包括突变体M1、M2及其亲本。采用偏最小二乘法(PLS)分析和最小二乘支持向量机(LS-SVM)建立校准模型。对包括可见光区域(400 - 700 nm)和近红外区域(700 - 1000 nm)在内的不同波段进行PLS分析以建立校准模型。对于叶片和绿色果实样本,最佳PLS模型在可见光区域获得;对于成熟果实样本,最佳PLS模型在近红外区域获得。此外,将不同的潜在变量(叶片为4 - 8个潜在变量,绿色果实为5 - 9个潜在变量,成熟果实为4 - 9个潜在变量)作为LS-SVM的输入,采用网格搜索技术和径向基函数(RBF)核开发潜在变量 - LS-SVM(LV-LS-SVM)模型。分别针对叶片样本、绿色果实样本和成熟果实样本,使用6个潜在变量、7个潜在变量和6个潜在变量获得了最优的LV-LS-SVM模型,且这些模型的性能优于PLS模型。此外,执行独立成分分析(ICA)以基于载荷权重选择若干敏感波长。针对叶片样本,采用550 - 560 nm、562 - 574 nm、670 - 680 nm和705 - 715 nm的敏感波长获得了最优的LS-SVM模型;针对绿色果实样本,采用548 - 556 nm、559 - 564 nm、678 - 685 nm和962 - 974 nm的敏感波长;针对成熟果实样本,采用712 - 718 nm、720 - 729 nm、968 - 978 nm和820 - 830 nm的敏感波长。所有这些模型的性能均优于PLS和LV-LS-SVM,基于叶片区分的相关系数(rp)、预测均方根误差(RMSEP)和偏差参数分别为0.9792、0.2632和0.0901;基于绿色果实区分的分别为0.9837、0.2783和0.1758;基于成熟果实区分分别为0.9804、0.2215和 - 0.0035。总体结果表明,ICA是选择敏感波长的有效方法,且Vis/NIR结合LS-SVM模型有能力从叶片和果实中预测不同品种(突变体M1、突变体M2及其亲本)的番茄。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验