Suppr超能文献

通过肌球蛋白-II的周转、收缩和应力稳定作用,在内侧细胞皮层中形成收缩网络和纤维。

Formation of contractile networks and fibers in the medial cell cortex through myosin-II turnover, contraction, and stress-stabilization.

作者信息

Nie Wei, Wei Ming-Tzo, Ou-Yang H Daniel, Jedlicka Sabrina S, Vavylonis Dimitrios

机构信息

Department of Physics, Lehigh University, Bethlehem, Pennsylvania.

出版信息

Cytoskeleton (Hoboken). 2015 Jan;72(1):29-46. doi: 10.1002/cm.21207. Epub 2015 Feb 7.

Abstract

The morphology of adhered cells depends crucially on the formation of a contractile meshwork of parallel and cross-linked fibers along the contacting surface. The motor activity and minifilament assembly of non-muscle myosin-II is an important component of cortical cytoskeletal remodeling during mechanosensing. We used experiments and computational modeling to study cortical myosin-II dynamics in adhered cells. Confocal microscopy was used to image the medial cell cortex of HeLa cells stably expressing myosin regulatory light chain tagged with GFP (MRLC-GFP). The distribution of MRLC-GFP fibers and focal adhesions was classified into three types of network morphologies. Time-lapse movies show: myosin foci appearance and disappearance; aligning and contraction; stabilization upon alignment. Addition of blebbistatin, which perturbs myosin motor activity, leads to a reorganization of the cortical networks and to a reduction of contractile motions. We quantified the kinetics of contraction, disassembly and reassembly of myosin networks using spatio-temporal image correlation spectroscopy (STICS). Coarse-grained numerical simulations include bipolar minifilaments that contract and align through specified interactions as basic elements. After assuming that minifilament turnover decreases with increasing contractile stress, the simulations reproduce stress-dependent fiber formation in between focal adhesions above a threshold myosin concentration. The STICS correlation function in simulations matches the function measured in experiments. This study provides a framework to help interpret how different cortical myosin remodeling kinetics may contribute to different cell shape and rigidity depending on substrate stiffness.

摘要

黏附细胞的形态在很大程度上取决于沿着接触表面形成的由平行且交联的纤维组成的收缩性网络。非肌肉肌球蛋白-II的运动活性和微丝组装是机械传感过程中皮质细胞骨架重塑的重要组成部分。我们使用实验和计算建模来研究黏附细胞中皮质肌球蛋白-II的动力学。共聚焦显微镜用于对稳定表达绿色荧光蛋白标记的肌球蛋白调节轻链(MRLC-GFP)的HeLa细胞的内侧细胞皮质进行成像。MRLC-GFP纤维和黏着斑的分布被分为三种网络形态类型。延时电影显示:肌球蛋白焦点的出现和消失;排列和收缩;排列后的稳定。添加干扰肌球蛋白运动活性的blebbistatin会导致皮质网络的重组并减少收缩运动。我们使用时空图像相关光谱法(STICS)对肌球蛋白网络的收缩、解体和重新组装的动力学进行了量化。粗粒度数值模拟包括通过特定相互作用收缩和排列的双极微丝作为基本元素。在假设微丝更新随着收缩应力的增加而减少之后,模拟再现了在高于阈值肌球蛋白浓度时黏着斑之间应力依赖性纤维的形成。模拟中的STICS相关函数与实验中测量的函数相匹配。这项研究提供了一个框架,以帮助解释不同的皮质肌球蛋白重塑动力学如何根据底物刚度对不同的细胞形状和刚度做出贡献。

相似文献

2
Regulation of myosin II dynamics by phosphorylation and dephosphorylation of its light chain in epithelial cells.
Mol Biol Cell. 2007 Feb;18(2):605-16. doi: 10.1091/mbc.e06-07-0590. Epub 2006 Dec 6.
3
Phosphorylation of myosin II regulatory light chain controls its accumulation, not that of actin, at the contractile ring in HeLa cells.
Exp Cell Res. 2012 May 1;318(8):915-24. doi: 10.1016/j.yexcr.2012.02.009. Epub 2012 Feb 22.
4
Functions of nonmuscle myosin II in assembly of the cellular contractile system.
PLoS One. 2012;7(7):e40814. doi: 10.1371/journal.pone.0040814. Epub 2012 Jul 13.
7
Uncoordinated regulation of stress fibers and focal adhesions by DAP kinase.
J Cell Sci. 2003 Dec 1;116(Pt 23):4777-90. doi: 10.1242/jcs.00794.
8
Myosin phosphatase targeting subunit 1 affects cell migration by regulating myosin phosphorylation and actin assembly.
Exp Cell Res. 2005 Apr 1;304(2):506-17. doi: 10.1016/j.yexcr.2004.11.025. Epub 2004 Dec 30.
9
Direct evidence for roles of phosphorylated regulatory light chain of myosin II in furrow ingression during cytokinesis in HeLa cells.
Genes Cells. 2009 May;14(5):555-68. doi: 10.1111/j.1365-2443.2009.01288.x. Epub 2009 Apr 15.
10
Myosin-II-dependent localization and dynamics of F-actin during cytokinesis.
Curr Biol. 2005 Apr 26;15(8):724-31. doi: 10.1016/j.cub.2005.02.055.

引用本文的文献

1
TGF-β2 enhances nanoscale cortex stiffness via condensation of cytoskeleton-focal adhesion plaque.
Biophys J. 2025 Jan 21;124(2):336-350. doi: 10.1016/j.bpj.2024.12.007. Epub 2024 Dec 6.

本文引用的文献

1
Molecular mechanisms of cellular mechanosensing.
Nat Mater. 2013 Nov;12(11):1064-71. doi: 10.1038/nmat3772. Epub 2013 Oct 20.
2
Cell cortex composition and homeostasis resolved by integrating proteomics and quantitative imaging.
Cytoskeleton (Hoboken). 2013 Nov;70(11):741-54. doi: 10.1002/cm.21142. Epub 2013 Oct 17.
3
Analysis of the local organization and dynamics of cellular actin networks.
J Cell Biol. 2013 Sep 30;202(7):1057-73. doi: 10.1083/jcb.201210123.
4
Differential effect of actomyosin relaxation on the dynamic properties of focal adhesion proteins.
PLoS One. 2013 Sep 9;8(9):e73549. doi: 10.1371/journal.pone.0073549. eCollection 2013.
5
Actin stress fibre subtypes in mesenchymal-migrating cells.
Open Biol. 2013 Jun 19;3(6):130001. doi: 10.1098/rsob.130001.
6
Stress generation by myosin minifilaments in actin bundles.
Phys Biol. 2013 Jun;10(3):036006. doi: 10.1088/1478-3975/10/3/036006. Epub 2013 Apr 17.
7
The tension mounts: stress fibers as force-generating mechanotransducers.
J Cell Biol. 2013 Jan 7;200(1):9-19. doi: 10.1083/jcb.201210090.
8
Connecting the nucleus to the cytoskeleton by SUN-KASH bridges across the nuclear envelope.
Curr Opin Cell Biol. 2013 Feb;25(1):57-62. doi: 10.1016/j.ceb.2012.10.014. Epub 2012 Nov 10.
9
Dynamic mechanisms of cell rigidity sensing: insights from a computational model of actomyosin networks.
PLoS One. 2012;7(11):e49174. doi: 10.1371/journal.pone.0049174. Epub 2012 Nov 5.
10
Self-organization of myosin II in reconstituted actomyosin bundles.
Biophys J. 2012 Sep 19;103(6):1265-74. doi: 10.1016/j.bpj.2012.08.028.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验