Nie Wei, Wei Ming-Tzo, Ou-Yang H Daniel, Jedlicka Sabrina S, Vavylonis Dimitrios
Department of Physics, Lehigh University, Bethlehem, Pennsylvania.
Cytoskeleton (Hoboken). 2015 Jan;72(1):29-46. doi: 10.1002/cm.21207. Epub 2015 Feb 7.
The morphology of adhered cells depends crucially on the formation of a contractile meshwork of parallel and cross-linked fibers along the contacting surface. The motor activity and minifilament assembly of non-muscle myosin-II is an important component of cortical cytoskeletal remodeling during mechanosensing. We used experiments and computational modeling to study cortical myosin-II dynamics in adhered cells. Confocal microscopy was used to image the medial cell cortex of HeLa cells stably expressing myosin regulatory light chain tagged with GFP (MRLC-GFP). The distribution of MRLC-GFP fibers and focal adhesions was classified into three types of network morphologies. Time-lapse movies show: myosin foci appearance and disappearance; aligning and contraction; stabilization upon alignment. Addition of blebbistatin, which perturbs myosin motor activity, leads to a reorganization of the cortical networks and to a reduction of contractile motions. We quantified the kinetics of contraction, disassembly and reassembly of myosin networks using spatio-temporal image correlation spectroscopy (STICS). Coarse-grained numerical simulations include bipolar minifilaments that contract and align through specified interactions as basic elements. After assuming that minifilament turnover decreases with increasing contractile stress, the simulations reproduce stress-dependent fiber formation in between focal adhesions above a threshold myosin concentration. The STICS correlation function in simulations matches the function measured in experiments. This study provides a framework to help interpret how different cortical myosin remodeling kinetics may contribute to different cell shape and rigidity depending on substrate stiffness.
黏附细胞的形态在很大程度上取决于沿着接触表面形成的由平行且交联的纤维组成的收缩性网络。非肌肉肌球蛋白-II的运动活性和微丝组装是机械传感过程中皮质细胞骨架重塑的重要组成部分。我们使用实验和计算建模来研究黏附细胞中皮质肌球蛋白-II的动力学。共聚焦显微镜用于对稳定表达绿色荧光蛋白标记的肌球蛋白调节轻链(MRLC-GFP)的HeLa细胞的内侧细胞皮质进行成像。MRLC-GFP纤维和黏着斑的分布被分为三种网络形态类型。延时电影显示:肌球蛋白焦点的出现和消失;排列和收缩;排列后的稳定。添加干扰肌球蛋白运动活性的blebbistatin会导致皮质网络的重组并减少收缩运动。我们使用时空图像相关光谱法(STICS)对肌球蛋白网络的收缩、解体和重新组装的动力学进行了量化。粗粒度数值模拟包括通过特定相互作用收缩和排列的双极微丝作为基本元素。在假设微丝更新随着收缩应力的增加而减少之后,模拟再现了在高于阈值肌球蛋白浓度时黏着斑之间应力依赖性纤维的形成。模拟中的STICS相关函数与实验中测量的函数相匹配。这项研究提供了一个框架,以帮助解释不同的皮质肌球蛋白重塑动力学如何根据底物刚度对不同的细胞形状和刚度做出贡献。