Indra Arindam, Menezes Prashanth W, Driess Matthias
Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17 Juni 135, Sekr. C2, 10623 Berlin (Germany), Fax: (+49) 030-314-29732.
ChemSusChem. 2015 Mar;8(5):776-85. doi: 10.1002/cssc.201402812. Epub 2015 Jan 30.
Artificial photosynthesis by harvesting solar light into chemical energy could solve the problems of energy conversion and storage in a sustainable way. In nature, CO2 and H2 O are transformed into carbohydrates by photosynthesis to store the solar energy in chemical bonds and water is oxidized to O2 in the oxygen-evolving center (OEC) of photosystem II (PS II). The OEC contains CaMn4 O5 cluster in which the metals are interconnected through oxido bridges. Inspired by biological systems, manganese-oxide-based catalysts have been synthesized and explored for water oxidation. Structural, functional modeling, and design of the materials have prevailed over the years to achieve an effective and stable catalyst system for water oxidation. Structural flexibility with eg(1) configuration of Mn(III) , mixed valency in manganese, and higher surface area are the main requirements to attain higher efficiency. This Minireview discusses the most recent progress in heterogeneous manganese-oxide-based catalysts for efficient chemical, photochemical, and electrochemical water oxidation as well as the structural requirements for the catalyst to perform actively.
通过将太阳光能转化为化学能来进行人工光合作用,可以以可持续的方式解决能量转换和存储问题。在自然界中,二氧化碳和水通过光合作用转化为碳水化合物,从而将太阳能存储在化学键中,同时水在光系统II(PS II)的析氧中心(OEC)被氧化为氧气。OEC包含CaMn4 O5簇,其中金属通过氧桥相互连接。受生物系统启发,人们已合成并探索了基于氧化锰的水氧化催化剂。多年来,材料的结构、功能建模和设计一直占据主导地位,以实现一种有效且稳定的水氧化催化剂体系。具有Mn(III)的eg(1)构型的结构灵活性、锰的混合价态以及更高的表面积是实现更高效率的主要要求。本综述讨论了用于高效化学、光化学和电化学水氧化的多相氧化锰基催化剂的最新进展,以及催化剂积极发挥作用的结构要求。