Menezes Prashanth W, Walter Carsten, Hausmann Jan Niklas, Beltrán-Suito Rodrigo, Schlesiger Christopher, Praetz Sebastian, Yu Verchenko Valeriy, Shevelkov Andrei V, Driess Matthias
Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany.
Institute of Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623, Berlin, Germany.
Angew Chem Int Ed Engl. 2019 Nov 11;58(46):16569-16574. doi: 10.1002/anie.201909904. Epub 2019 Oct 15.
For the first time, the manganese gallide (MnGa ) served as an intermetallic precursor, which upon in situ electroconversion in alkaline media produced high-performance and long-term-stable MnO -based electrocatalysts for water oxidation. Unexpectedly, its electrocorrosion (with the concomitant loss of Ga) leads simultaneously to three crystalline types of MnO minerals with distinct structures and induced defects: birnessite δ-MnO , feitknechtite β-MnOOH, and hausmannite α-Mn O . The abundance and intrinsic stabilization of Mn /Mn active sites in the three MnO phases explains the superior efficiency and durability of the system for electrocatalytic water oxidation. After electrophoretic deposition of the MnGa precursor on conductive nickel foam (NF), a low overpotential of 291 mV, comparable to that of precious-metal-based catalysts, could be achieved at a current density of 10 mA cm with a durability of more than five days.
首次将锰镓化物(MnGa)用作金属间前驱体,其在碱性介质中原位电转化后可生成用于水氧化的高性能且长期稳定的MnO基电催化剂。出乎意料的是,其电腐蚀(伴随Ga的损失)同时导致了三种具有不同结构和诱导缺陷的MnO矿物晶体类型:水钠锰矿δ-MnO、羟锰矿β-MnOOH和黑锰矿α-Mn₃O₄。这三种MnO相中Mn³⁺/Mn²⁺活性位点的丰度和固有稳定性解释了该系统在电催化水氧化方面的卓越效率和耐久性。在将MnGa前驱体电泳沉积在导电泡沫镍(NF)上后,在电流密度为10 mA cm⁻²时可实现291 mV的低过电位,这与基于贵金属的催化剂相当,且耐久性超过五天。