Buskohl Philip R, Kramb Ryan C, Vaia Richard A
AFRL/RX Materials & Manufacturing Directorate, Air Force Research Laboratory , Wright-Patterson AFB, Ohio 45433, United States.
J Phys Chem B. 2015 Feb 26;119(8):3595-602. doi: 10.1021/jp512829h. Epub 2015 Feb 16.
Synchronization of motion, task, or communication is responsible for the successful function of many living systems. Composite Belousov-Zhabotinsky (BZ) self-oscillating hydrogels exhibit a sufficiently complex chemical-mechanical feedback to develop synchrony and other dynamical behaviors. In the context of BZ gels, synchrony is the sustained, oscillating oxidation with constant phase of two or more catalyst-immobilized gel segments. However, design criteria to control chemical-mechanical synchronization through patterning of the reaction catalyst are lacking. To characterize the fundamental units of composite device design, the periodic oxidation behavior of isolated nodes, node pairs, and multinode systems were investigated. Isolated nodes of Ru-immobilized gelatin exhibited three distinct, volume-dependent, regimes of oscillation: (i) long period (10-40 min), (ii) biperiod (mix of long and short), and (iii) short period (2.5 min). Node pairs and multinode grids of Ru gelatin were embedded in plain gelatin through a film stacking or 3D printing technique. The fraction of synchronized node pairs decreased with increasing interspace distance. Embedment increased the probability of synchronization, with 100% synchronization for interspace distances of less than 10 times the characteristic length of the reaction-diffusion process. The phase difference between synchronized node pairs transitioned from in-phase at small interspace distances to antiphase at large distances, providing the first experimental verification of antiphase synchrony in composite BZ gels. From these design criteria and fabrication techniques, the chemical-mechanical feedback of BZ composites can be programmed through strategic patterning of the catalyst to build BZ devices for sensor, trigger, or chemical computing applications.
运动、任务或通信的同步对于许多生命系统的成功运作至关重要。复合贝洛索夫-扎博廷斯基(BZ)自振荡水凝胶展现出足够复杂的化学-机械反馈,从而产生同步及其他动力学行为。在BZ凝胶的背景下,同步是指两个或更多固定有催化剂的凝胶片段以恒定相位持续进行振荡氧化。然而,目前缺乏通过反应催化剂的图案化来控制化学-机械同步的设计标准。为了表征复合器件设计的基本单元,研究了孤立节点、节点对和多节点系统的周期性氧化行为。固定有钌的明胶孤立节点表现出三种不同的、与体积相关的振荡状态:(i)长周期(10 - 40分钟),(ii)双周期(长周期和短周期混合),以及(iii)短周期(2.5分钟)。钌明胶的节点对和多节点网格通过薄膜堆叠或3D打印技术嵌入普通明胶中。同步节点对的比例随着间隙距离的增加而降低。嵌入增加了同步的概率,当间隙距离小于反应-扩散过程特征长度的10倍时,同步概率达到100%。同步节点对之间的相位差从间隙距离较小时的同相转变为间隙距离较大时的反相,这为复合BZ凝胶中的反相同步提供了首个实验验证。基于这些设计标准和制造技术,可以通过对催化剂进行策略性图案化来对BZ复合材料的化学-机械反馈进行编程,以构建用于传感器、触发器或化学计算应用的BZ器件。