Suppr超能文献

别洛索夫-扎博京斯基自主水凝胶复合材料:通过不对称性调节波。

Belousov-Zhabotinsky autonomic hydrogel composites: Regulating waves via asymmetry.

作者信息

Buskohl Philip R, Vaia Richard A

机构信息

Functional Materials Division, Materials and Manufacturing Directorate, Air Force Research Laboratory, 2179 12th Street, Wright-Patterson Air Force Base, OH 45433, USA.

出版信息

Sci Adv. 2016 Sep 23;2(9):e1600813. doi: 10.1126/sciadv.1600813. eCollection 2016 Sep.

Abstract

Belousov-Zhabotinsky (BZ) autonomic hydrogel composites contain active nodes of immobilized catalyst (Ru) encased within a nonactive matrix. Designing functional hierarchies of chemical and mechanical communication between these nodes enables applications ranging from encryption, sensors, and mechanochemical actuators to artificial skin. However, robust design rules and verification of computational models are challenged by insufficient understanding of the relative importance of local (molecular) heterogeneities, active node shape, and embedment geometry on transient and steady-state behavior. We demonstrate the predominance of asymmetric embedment and node shape in low-strain, BZ-gelatin composites and correlate behavior with gradients in BZ reactants. Asymmetric embedment of square and rectangular nodes results in directional steady-state waves that initiate at the embedded edge and propagate toward the free edge. In contrast, symmetric embedment does not produce preferential wave propagation because of a lack of diffusion gradient across the catalyzed region. The initiation at the embedded edge is correlated with bromide absorption by the inactive matrix, which locally elevates the bromate concentration required for catalyst oxidation. The competition between embedment asymmetry and node geometry was used to demonstrate a repeatable switch in wave direction that functions as a signal delay. Furthermore, signal propagation in or out of the composite was demonstrated via embedment asymmetry and relative dimensions of a T-shaped active network node. Overall, structural asymmetry provides a robust approach to controlling initiation and orientation of chemical-mechanical communication within composite BZ gels.

摘要

别洛索夫-扎博京斯基(BZ)自主水凝胶复合材料包含固定在非活性基质中的催化剂(钌)活性节点。设计这些节点之间化学和机械通信的功能层次结构,可实现从加密、传感器、机械化学致动器到人造皮肤等各种应用。然而,由于对局部(分子)不均匀性、活性节点形状和嵌入几何形状对瞬态和稳态行为的相对重要性理解不足,稳健的设计规则和计算模型的验证面临挑战。我们证明了在低应变的BZ-明胶复合材料中不对称嵌入和节点形状的主导作用,并将行为与BZ反应物中的梯度相关联。方形和矩形节点的不对称嵌入会产生定向稳态波,这些波从嵌入边缘开始并向自由边缘传播。相比之下,对称嵌入不会产生优先波传播,因为在催化区域缺乏扩散梯度。嵌入边缘的起始与非活性基质对溴化物的吸收相关,这会局部提高催化剂氧化所需的溴酸盐浓度。利用嵌入不对称性和节点几何形状之间的竞争,证明了作为信号延迟的波方向上的可重复切换。此外,通过T形活性网络节点的嵌入不对称性和相对尺寸,证明了信号在复合材料中的传入或传出。总体而言,结构不对称性为控制复合BZ凝胶内化学-机械通信的起始和方向提供了一种稳健的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e081/5035124/3cfd0df43cde/1600813-F1.jpg

相似文献

1
Belousov-Zhabotinsky autonomic hydrogel composites: Regulating waves via asymmetry.
Sci Adv. 2016 Sep 23;2(9):e1600813. doi: 10.1126/sciadv.1600813. eCollection 2016 Sep.
2
Synchronicity in composite hydrogels: Belousov-Zhabotinsky (BZ) active nodes in gelatin.
J Phys Chem B. 2015 Feb 26;119(8):3595-602. doi: 10.1021/jp512829h. Epub 2015 Feb 16.
3
Controlling chemical oscillations in heterogeneous Belousov-Zhabotinsky gels via mechanical strain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Apr;79(4 Pt 2):046214. doi: 10.1103/PhysRevE.79.046214. Epub 2009 Apr 22.
4
Effect of Reaction Parameters on the Wavelength of Pulse Waves in the Belousov-Zhabotinsky Reaction-Diffusion System.
J Phys Chem A. 2019 Oct 31;123(43):9292-9297. doi: 10.1021/acs.jpca.9b08254. Epub 2019 Oct 16.
5
Chemical Oscillation and Morphological Oscillation in Catalyst-Embedded Lyotropic Liquid Crystalline Gels.
Front Chem. 2020 Oct 23;8:583165. doi: 10.3389/fchem.2020.583165. eCollection 2020.
6
Beating polymer gels coupled with a nonlinear chemical reaction.
Chaos. 1999 Jun;9(2):260-266. doi: 10.1063/1.166402.
7
Chemical waves in self-oscillating gels.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Jul;62(1 Pt B):793-8. doi: 10.1103/physreve.62.793.
8
Self-oscillating Gel Accelerated while Sensing the Shape of an Aqueous Surface.
Langmuir. 2016 Apr 26;32(16):3901-6. doi: 10.1021/acs.langmuir.6b00337. Epub 2016 Apr 12.
10
Self-oscillating gels driven by the Belousov-Zhabotinsky reaction as novel smart materials.
Adv Mater. 2010 Aug 17;22(31):3463-83. doi: 10.1002/adma.200904075.

引用本文的文献

1
Rolling of stimuli-bent cylindrical robots using contact finite element simulations.
Soft Matter. 2025 May 7;21(18):3480-3491. doi: 10.1039/d5sm00080g.
2
Chemical Oscillation and Morphological Oscillation in Catalyst-Embedded Lyotropic Liquid Crystalline Gels.
Front Chem. 2020 Oct 23;8:583165. doi: 10.3389/fchem.2020.583165. eCollection 2020.
3
Reentrant Phase Transitions and Non-Equilibrium Dynamics in Membraneless Organelles.
Biochemistry. 2018 May 1;57(17):2470-2477. doi: 10.1021/acs.biochem.8b00001. Epub 2018 Apr 3.

本文引用的文献

1
Mechanically induced chemical oscillations and motion in responsive gels.
Soft Matter. 2007 Aug 14;3(9):1138-1144. doi: 10.1039/b707393c.
2
Actuating materials. Voxelated liquid crystal elastomers.
Science. 2015 Feb 27;347(6225):982-4. doi: 10.1126/science.1261019.
3
Synchronicity in composite hydrogels: Belousov-Zhabotinsky (BZ) active nodes in gelatin.
J Phys Chem B. 2015 Feb 26;119(8):3595-602. doi: 10.1021/jp512829h. Epub 2015 Feb 16.
4
Shape-reprogrammable polymers: encoding, erasing, and re-encoding.
Adv Mater. 2014 Dec 23;26(48):8114-9. doi: 10.1002/adma.201402901. Epub 2014 Oct 17.
5
Giant volume change of active gels under continuous flow.
J Am Chem Soc. 2014 May 21;136(20):7341-7. doi: 10.1021/ja503665t. Epub 2014 May 2.
6
Autonomic composite hydrogels by reactive printing: materials and oscillatory response.
Soft Matter. 2014 Mar 7;10(9):1329-36. doi: 10.1039/c3sm51650d.
7
Modeling chemoresponsive polymer gels.
Annu Rev Chem Biomol Eng. 2014;5:35-54. doi: 10.1146/annurev-chembioeng-060713-035949. Epub 2014 Feb 3.
8
Post-self-assembly cross-linking to integrate molecular nanofibers with copolymers in oscillatory hydrogels.
J Phys Chem B. 2013 May 30;117(21):6566-73. doi: 10.1021/jp401353e. Epub 2013 May 20.
9
Reconfigurable assemblies of active, autochemotactic gels.
Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):431-6. doi: 10.1073/pnas.1213432110. Epub 2012 Dec 27.
10
Designing responsive buckled surfaces by halftone gel lithography.
Science. 2012 Mar 9;335(6073):1201-5. doi: 10.1126/science.1215309.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验