Suppr超能文献

使用二元透镜进行超声场测量。

Ultrasound field measurement using a binary lens.

作者信息

Clement Gregory, Nomura Hideyuki, Kamakura Tomoo

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Feb;62(2):350-9. doi: 10.1109/TUFFC.2014.006800.

Abstract

Field characterization methods using a scattering target in the absence of a point-like receiver have been well described, in which scattering is recorded by a relatively large receiver located outside the field of measurement. Unfortunately, such methods are prone to artifacts caused by averaging across the receiver surface. To avoid this problem while simultaneously increasing the gain of a received signal, the present study introduces a binary plate lens designed to focus sphericallyspreading waves onto a planar region having a nearly-uniform phase proportional to that of the target location. The lens is similar to a zone plate, but modified to produce a bi-convexlike behavior, such that it focuses both planar and spherically spreading waves. A measurement device suitable for characterizing narrowband ultrasound signals in air is designed around this lens by coupling it to a target and planar receiver. A prototype device is constructed and used to characterize the field of a highly-focused 400-kHz in-air transducer along 2 radial lines. Comparison of the measurements with numeric predictions formed from nonlinear acoustic simulation showed good relative pressure correlation, with mean differences of 10% and 12% over the center 3-dB full-width at half-maximum drop and 12% and 17% over the 6-dB drop.

摘要

在没有点状接收器的情况下使用散射目标的场表征方法已得到充分描述,其中散射由位于测量场外部的相对较大的接收器记录。不幸的是,此类方法容易出现因接收器表面平均而导致的伪影。为避免此问题并同时提高接收信号的增益,本研究引入了一种二元平板透镜,其设计目的是将球面扩展波聚焦到一个平面区域上,该平面区域具有与目标位置成正比的近乎均匀的相位。该透镜类似于波带片,但经过改进以产生双凸状行为,从而使其能够聚焦平面波和球面扩展波。围绕该透镜设计了一种适用于表征空气中窄带超声信号的测量装置,方法是将其与目标和平面接收器耦合。构建了一个原型装置,并用于沿两条径向线表征高度聚焦的400 kHz空气中换能器的场。将测量结果与由非线性声学模拟形成的数值预测进行比较,结果显示出良好的相对压力相关性,在中心3 dB半高宽下降处的平均差异为10%和12%,在6 dB下降处的平均差异为12%和17%。

相似文献

1
Ultrasound field measurement using a binary lens.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Feb;62(2):350-9. doi: 10.1109/TUFFC.2014.006800.
2
Lens-focused transducer modeling using an extended KLM model.
Ultrasonics. 2007 May;46(2):155-67. doi: 10.1016/j.ultras.2007.01.006. Epub 2007 Feb 8.
3
In vitro verification of multiple-receiver Doppler ultrasound for velocity estimation improvement.
Ultrasound Med Biol. 2010 Jun;36(6):991-8. doi: 10.1016/j.ultrasmedbio.2010.03.016. Epub 2010 May 5.
4
Simulation of sound field in a tissue medium generated by a concave spherically annular transducer.
Ultrasonics. 2006 Dec 22;44 Suppl 1:e271-4. doi: 10.1016/j.ultras.2006.06.011. Epub 2006 Jun 30.
5
Width-modulated square-wave pulses for ultrasound applications.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Nov;60(11):2244-56. doi: 10.1109/TUFFC.2013.6644730.
6
3-D numerical modeling for axisymmetrical piezoelectric structures: application to high-frequency ultrasonic transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 May;57(5):1188-99. doi: 10.1109/TUFFC.2010.1532.
7
The feasibility of non-contact ultrasound for medical imaging.
Phys Med Biol. 2013 Sep 21;58(18):6263-78. doi: 10.1088/0031-9155/58/18/6263. Epub 2013 Aug 22.
8
Damage characterization using guided-wave linear arrays and image compounding techniques.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Sep;57(9):1985-95. doi: 10.1109/TUFFC.2010.1646.
9
Super-resolution imaging using multi- electrode CMUTs: theoretical design and simulation using point targets.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Nov;60(11):2295-309. doi: 10.1109/TUFFC.2013.6644734.
10
Harmonic ultrasound fields through layered liquid media.
IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Feb;51(2):146-52.

引用本文的文献

1
Design of Acoustic Bifocal Lenses Using a Fourier-Based Algorithm.
Sensors (Basel). 2021 Dec 11;21(24):8285. doi: 10.3390/s21248285.
2
On the Design of Soret Zone Plates Based on Binary Sequences Using Directional Transducers.
Sensors (Basel). 2021 Sep 10;21(18):6086. doi: 10.3390/s21186086.
3
Analysis of Predistortion Techniques on Fresnel Zone Plates in Ultrasound Applications.
Sensors (Basel). 2021 Jul 27;21(15):5066. doi: 10.3390/s21155066.
4
M-Bonacci Zone Plates for Ultrasound Focusing.
Sensors (Basel). 2019 Oct 5;19(19):4313. doi: 10.3390/s19194313.
5
Design of Acoustical Bessel-Like Beam Formation by a Pupil Masked Soret Zone Plate Lens.
Sensors (Basel). 2019 Jan 17;19(2):378. doi: 10.3390/s19020378.

本文引用的文献

1
The feasibility of non-contact ultrasound for medical imaging.
Phys Med Biol. 2013 Sep 21;58(18):6263-78. doi: 10.1088/0031-9155/58/18/6263. Epub 2013 Aug 22.
2
Focusing of longitudinal ultrasonic waves in air with an aperiodic flat lens.
J Acoust Soc Am. 2011 Nov;130(5):2789-96. doi: 10.1121/1.3640841.
3
On the use of Gegenbauer reconstructions for shock wave propagation modeling.
J Acoust Soc Am. 2011 Sep;130(3):1115-24. doi: 10.1121/1.3621485.
4
Verification of the Westervelt equation for focused transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 May;58(5):1097-101. doi: 10.1109/TUFFC.2011.1910.
5
Evaluation of a wave-vector-frequency-domain method for nonlinear wave propagation.
J Acoust Soc Am. 2011 Jan;129(1):32-46. doi: 10.1121/1.3504705.
6
Cellular polypropylene polymer foam as air-coupled ultrasonic transducer materials.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Oct;57(10):2343-55. doi: 10.1109/TUFFC.2010.1695.
8
Use of the application of heterodyne laser interferometer in power ultrasonics.
Ultrasonics. 2006 Dec 22;44 Suppl 1:e1567-70. doi: 10.1016/j.ultras.2006.05.163. Epub 2006 Jun 9.
9
Characterization of high-frequency, single-element focused transducers with wire target and hydrophone.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Sep;52(9):1608-12. doi: 10.1109/tuffc.2005.1516034.
10
Progress in medical ultrasound exposimetry.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 May;52(5):717-36. doi: 10.1109/tuffc.2005.1503960.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验