Suppr超能文献

高强度聚焦超声场的声学特性:一种测量与建模相结合的方法。

Acoustic characterization of high intensity focused ultrasound fields: a combined measurement and modeling approach.

作者信息

Canney Michael S, Bailey Michael R, Crum Lawrence A, Khokhlova Vera A, Sapozhnikov Oleg A

机构信息

Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington 98105, USA.

出版信息

J Acoust Soc Am. 2008 Oct;124(4):2406-20. doi: 10.1121/1.2967836.

Abstract

Acoustic characterization of high intensity focused ultrasound (HIFU) fields is important both for the accurate prediction of ultrasound induced bioeffects in tissues and for the development of regulatory standards for clinical HIFU devices. In this paper, a method to determine HIFU field parameters at and around the focus is proposed. Nonlinear pressure waveforms were measured and modeled in water and in a tissue-mimicking gel phantom for a 2 MHz transducer with an aperture and focal length of 4.4 cm. Measurements were performed with a fiber optic probe hydrophone at intensity levels up to 24,000 W/cm(2). The inputs to a Khokhlov-Zabolotskaya-Kuznetsov-type numerical model were determined based on experimental low amplitude beam plots. Strongly asymmetric waveforms with peak positive pressures up to 80 MPa and peak negative pressures up to 15 MPa were obtained both numerically and experimentally. Numerical simulations and experimental measurements agreed well; however, when steep shocks were present in the waveform at focal intensity levels higher than 6000 W/cm(2), lower values of the peak positive pressure were observed in the measured waveforms. This underrepresentation was attributed mainly to the limited hydrophone bandwidth of 100 MHz. It is shown that a combination of measurements and modeling is necessary to enable accurate characterization of HIFU fields.

摘要

高强度聚焦超声(HIFU)场的声学特性对于准确预测超声在组织中引起的生物效应以及制定临床HIFU设备的监管标准都很重要。本文提出了一种确定焦点处及焦点周围HIFU场参数的方法。对于孔径和焦距均为4.4 cm的2 MHz换能器,在水和仿组织凝胶体模中测量并模拟了非线性压力波形。使用光纤探头水听器在高达24,000 W/cm²的强度水平下进行测量。基于实验低振幅波束图确定了Khokhlov-Zabolotskaya-Kuznetsov型数值模型的输入。在数值和实验上均获得了强烈不对称的波形,其正峰值压力高达80 MPa,负峰值压力高达15 MPa。数值模拟和实验测量结果吻合良好;然而,当在高于6000 W/cm²的聚焦强度水平下波形中存在陡峭冲击波时,在测量波形中观察到的正峰值压力值较低。这种表示不足主要归因于100 MHz的有限水听器带宽。结果表明,测量和建模相结合对于准确表征HIFU场是必要的。

相似文献

3
Focused ultrasound transducer spatial peak intensity estimation: a comparison of methods.
Phys Med Biol. 2018 Mar 7;63(5):055015. doi: 10.1088/1361-6560/aaaf01.
4
Measurement of high intensity focused ultrasound fields by a fiber optic probe hydrophone.
J Acoust Soc Am. 2006 Aug;120(2):676-85. doi: 10.1121/1.2214131.
5
Strongly Focused HIFU Transducers With Simultaneous Optical Observation for Treatment of Skin at 20 MHz.
Ultrasound Med Biol. 2022 Jul;48(7):1309-1327. doi: 10.1016/j.ultrasmedbio.2022.03.002. Epub 2022 Apr 9.
6
Membrane hydrophone measurement and numerical simulation of HIFU fields up to developed shock regimes.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Feb;60(2):290-300. doi: 10.1109/TUFFC.2013.2565.
7
Rapid Spatial Mapping of Focused Ultrasound Fields Using a Planar Fabry-Pérot Sensor.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Nov;64(11):1711-1722. doi: 10.1109/TUFFC.2017.2748886. Epub 2017 Sep 4.
8
Characterization of nonlinear ultrasound fields of 2D therapeutic arrays.
IEEE Int Ultrason Symp. 2012 Oct 7;2012:1-4. doi: 10.1109/ULTSYM.2012.0231.
9
"HIFU Beam:" A Simulator for Predicting Axially Symmetric Nonlinear Acoustic Fields Generated by Focused Transducers in a Layered Medium.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Sep;68(9):2837-2852. doi: 10.1109/TUFFC.2021.3074611. Epub 2021 Aug 27.

引用本文的文献

3
Fracture and Fragmentation of Vascular Calcifications by Focused Ultrasound.
J Cardiovasc Transl Res. 2025 Apr 21. doi: 10.1007/s12265-025-10611-4.
4
5
Overview of Therapeutic Ultrasound Applications and Safety Considerations: 2024 Update.
J Ultrasound Med. 2025 Mar;44(3):381-433. doi: 10.1002/jum.16611. Epub 2024 Nov 11.
6
Histotripsy-Induced Bactericidal Activity Correlates to Size of Cavitation Cloud In Vitro.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Dec;71(12: Breaking the Resolution Barrier in Ultrasound):1868-1878. doi: 10.1109/TUFFC.2024.3476438. Epub 2025 Jan 8.
7
Revealing physical interactions of ultrasound waves with the body through photoelasticity imaging.
Opt Lasers Eng. 2024 Oct;181. doi: 10.1016/j.optlaseng.2024.108361. Epub 2024 Jun 14.
8
Focused ultrasound as a treatment modality for gliomas.
Front Neurol. 2024 May 15;15:1387986. doi: 10.3389/fneur.2024.1387986. eCollection 2024.
9
Histotripsy: A Method for Mechanical Tissue Ablation with Ultrasound.
Annu Rev Biomed Eng. 2024 Jul;26(1):141-167. doi: 10.1146/annurev-bioeng-073123-022334. Epub 2024 Jun 20.

本文引用的文献

1
Clinical applications of focused ultrasound-the brain.
Int J Hyperthermia. 2007 Mar;23(2):193-202. doi: 10.1080/02656730701200094.
3
Measurement of high intensity focused ultrasound fields by a fiber optic probe hydrophone.
J Acoust Soc Am. 2006 Aug;120(2):676-85. doi: 10.1121/1.2214131.
4
Control of prostate cancer by transrectal HIFU in 227 patients.
Eur Urol. 2007 Feb;51(2):381-7. doi: 10.1016/j.eururo.2006.04.012. Epub 2006 May 2.
7
Gel phantom for use in high-intensity focused ultrasound dosimetry.
Ultrasound Med Biol. 2005 Oct;31(10):1383-9. doi: 10.1016/j.ultrasmedbio.2005.06.004.
9
Progress in medical ultrasound exposimetry.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 May;52(5):717-36. doi: 10.1109/tuffc.2005.1503960.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验