Suppr超能文献

运用回顾性言语描述和网络分析对比紧急情况下驾驶员行为的不同模型。

Contrasting models of driver behaviour in emergencies using retrospective verbalisations and network analysis.

作者信息

Banks Victoria A, Stanton Neville A

机构信息

a Civil, Maritime, Environmental Engineering and Science Unit, Faculty of Engineering and the Environment, University of Southampton , Southampton , UK.

出版信息

Ergonomics. 2015;58(8):1337-46. doi: 10.1080/00140139.2015.1005175. Epub 2015 Feb 2.

Abstract

UNLABELLED

Automated assistance in driving emergencies aims to improve the safety of our roads by avoiding or mitigating the effects of accidents. However, the behavioural implications of such systems remain unknown. This paper introduces the driver decision-making in emergencies (DDMiEs) framework to investigate how the level and type of automation may affect driver decision-making and subsequent responses to critical braking events using network analysis to interrogate retrospective verbalisations. Four DDMiE models were constructed to represent different levels of automation within the driving task and its effects on driver decision-making. Findings suggest that whilst automation does not alter the decision-making pathway (e.g. the processes between hazard detection and response remain similar), it does appear to significantly weaken the links between information-processing nodes. This reflects an unintended yet emergent property within the task network that could mean that we may not be improving safety in the way we expect.

PRACTITIONER SUMMARY

This paper contrasts models of driver decision-making in emergencies at varying levels of automation using the Southampton University Driving Simulator. Network analysis of retrospective verbalisations indicates that increasing the level of automation in driving emergencies weakens the link between information-processing nodes essential for effective decision-making.

摘要

未标注

驾驶紧急情况中的自动辅助旨在通过避免或减轻事故影响来提高道路安全性。然而,此类系统对行为的影响仍不明确。本文引入紧急情况下驾驶员决策(DDMiEs)框架,以研究自动化水平和类型如何影响驾驶员决策以及随后对紧急制动事件的反应,使用网络分析来审视回顾性言语报告。构建了四个DDMiEs模型来代表驾驶任务中不同自动化水平及其对驾驶员决策的影响。研究结果表明,虽然自动化不会改变决策路径(例如,危险检测和反应之间的过程保持相似),但它似乎确实显著削弱了信息处理节点之间的联系。这反映了任务网络中一种意外但又出现的特性,这可能意味着我们可能没有以预期的方式提高安全性。

从业者总结

本文使用南安普顿大学驾驶模拟器对比了不同自动化水平下紧急情况下驾驶员决策模型。对回顾性言语报告的网络分析表明,在驾驶紧急情况中提高自动化水平会削弱有效决策所需的信息处理节点之间的联系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验