Mori Yuki, Tomonaga Daichi, Kalashnikova Anastasia, Furuya Fumihiko, Akimoto Nozomi, Ifuku Masataka, Okuno Yuko, Beppu Kaoru, Fujita Kyota, Katafuchi Toshihiko, Shimura Hiroki, Churilov Leonid P, Noda Mami
Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
Glia. 2015 May;63(5):906-20. doi: 10.1002/glia.22792. Epub 2015 Jan 30.
L-tri-iodothyronine (3, 3', 5-triiodothyronine; T3) is an active form of the thyroid hormone (TH) essential for the development and function of the CNS. Though nongenomic effect of TH, its plasma membrane-bound receptor, and its signaling has been identified, precise function in each cell type of the CNS remained to be investigated. Clearance of cell debris and apoptotic cells by microglia phagocytosis is a critical step for the restoration of damaged neuron-glia networks. Here we report nongenomic effects of T3 on microglial functions. Exposure to T3 increased migration, membrane ruffling and phagocytosis of primary cultured mouse microglia. Injection of T3 together with stab wound attracted more microglia to the lesion site in vivo. Blocking TH transporters and receptors (TRs) or TRα-knock-out (KO) suppressed T3-induced microglial migration and morphological change. The T3-induced microglial migration or membrane ruffling was attenuated by inhibiting Gi /o -protein as well as NO synthase, and subsequent signaling such as phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK). Inhibitors for Na(+) /K(+) -ATPase, reverse mode of Na(+) /Ca(2+) exchanger (NCX), and small-conductance Ca(2+) -dependent K(+) (SK) channel also attenuated microglial migration or phagocytosis. Interestingly, T3-induced microglial migration, but not phagocytosis, was dependent on GABAA and GABAB receptors, though GABA itself did not affect migratory aptitude. Our results demonstrate that T3 modulates multiple functional responses of microglia via multiple complex mechanisms, which may contribute to physiological and/or pathophysiological functions of the CNS.
L-三碘甲状腺原氨酸(3,3',5-三碘甲状腺原氨酸;T3)是甲状腺激素(TH)的一种活性形式,对中枢神经系统(CNS)的发育和功能至关重要。尽管已确定TH的非基因组效应、其细胞膜结合受体及其信号传导,但TH在CNS每种细胞类型中的精确功能仍有待研究。小胶质细胞吞噬清除细胞碎片和凋亡细胞是受损神经元-胶质细胞网络恢复的关键步骤。在此,我们报告T3对小胶质细胞功能的非基因组效应。暴露于T3可增加原代培养小鼠小胶质细胞的迁移、膜皱襞形成和吞噬作用。在体内,将T3与刺伤一起注射可吸引更多小胶质细胞至损伤部位。阻断甲状腺激素转运体和受体(TRs)或TRα基因敲除(KO)可抑制T3诱导的小胶质细胞迁移和形态变化。抑制Gi/o蛋白以及一氧化氮合酶以及随后的信号传导,如磷酸肌醇3激酶(PI3K)、丝裂原活化蛋白激酶(MAPK)/细胞外信号调节激酶(ERK),可减弱T3诱导的小胶质细胞迁移或膜皱襞形成。钠/钾-ATP酶抑制剂、钠/钙交换体(NCX)的反向模式以及小电导钙依赖性钾(SK)通道抑制剂也可减弱小胶质细胞迁移或吞噬作用。有趣的是,T3诱导的小胶质细胞迁移而非吞噬作用依赖于GABAA和GABAB受体,尽管GABA本身并不影响迁移能力。我们的结果表明,T3通过多种复杂机制调节小胶质细胞的多种功能反应,这可能有助于CNS的生理和/或病理生理功能。