Linnane A W, Marzuki S, Ozawa T, Tanaka M
Centre for Molecular Biology and Medicine, Monash University, Clayton, Victoria, Australia.
Lancet. 1989 Mar 25;1(8639):642-5. doi: 10.1016/s0140-6736(89)92145-4.
The human mitochondrial genome is very small and economically packed; the expression of the whole genome is essential for the maintenance of mitochondrial bioenergetic function. Mutation occurs at a much higher rate in the mitochondrial DNA (mtDNA) than in chromosomal DNA. Transient heteroplasmy of mtDNA occurs after a mutational event; the random pattern of cytoplasmic segregation that occurs during subsequent growth gives rise to a mosaic of cells. The variable proportion of mutant mitochondrial genomes per cell results in cells with a range of bioenergetic capacities. It is proposed that the accumulation of mitochondrial mutations and the subsequent cytoplasmic segregation of these mutations during life is an important contributor both to the ageing process and to several human degenerative diseases. Replacement therapy and pharmacological support may be possible for the amelioration of such disorders by means of appropriate redox compounds. Moreover, new compounds with desired redox potentials can be rationally designed for clinical use.
人类线粒体基因组非常小且经济紧凑;整个基因组的表达对于维持线粒体生物能量功能至关重要。线粒体DNA(mtDNA)中的突变发生率比染色体DNA高得多。突变事件后会出现mtDNA的短暂异质性;随后生长过程中发生的细胞质随机分离模式会产生细胞镶嵌体。每个细胞中突变线粒体基因组的可变比例导致细胞具有一系列生物能量能力。有人提出,线粒体突变的积累以及这些突变在生命过程中随后的细胞质分离是衰老过程和几种人类退行性疾病的重要促成因素。通过适当的氧化还原化合物,替代疗法和药物支持可能有助于改善此类疾病。此外,可以合理设计具有所需氧化还原电位的新化合物用于临床。