Goldstein David S, Sullivan Patti, Cooney Adele, Jinsmaa Yunden, Kopin Irwin J, Sharabi Yehonatan
Clinical Neurocardiology Section, CNP/DIR/NINDS/NIH, Bethesda, Maryland, USA.
J Neurochem. 2015 Apr;133(1):14-25. doi: 10.1111/jnc.13042. Epub 2015 Feb 25.
Repeated systemic administration of the mitochondrial complex I inhibitor rotenone produces a rodent model of Parkinson's disease (PD). Mechanisms of relatively selective rotenone-induced damage to nigrostriatal dopaminergic neurons remain incompletely understood. According to the 'catecholaldehyde hypothesis,' buildup of the autotoxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) contributes to PD pathogenesis. Vesicular uptake blockade increases DOPAL levels, and DOPAL is detoxified mainly by aldehyde dehydrogenase (ALDH). We tested whether rotenone interferes with vesicular uptake and intracellular ALDH activity. Endogenous and F-labeled catechols were measured in PC12 cells incubated with rotenone (0-1000 nM, 180 min), without or with F-dopamine (2 μM) to track vesicular uptake and catecholamine metabolism. Rotenone dose dependently increased DOPAL, F-DOPAL, and 3,4-dihydroxyphenylethanol (DOPET) levels while decreasing dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels and the ratio of dopamine to the sum of its deaminated metabolites. In test tubes, rotenone did not affect conversion of DOPAL to DOPAC by ALDH when NAD(+) was supplied, whereas the direct-acting ALDH inhibitor benomyl markedly increased DOPAL and decreased DOPAC concentrations in the reaction mixtures. We propose that rotenone builds up intracellular DOPAL by decreasing ALDH activity and attenuating vesicular sequestration of cytoplasmic catecholamines. The results provide a novel mechanism for selective rotenone-induced toxicity in dopaminergic neurons. We report that rotenone, a mitochondrial complex I inhibitor that produces an animal model of Parkinson's disease, increases intracellular levels of the toxic dopamine metabolite 3,4-dihydroxyphenyl-acetaldehyde (DOPAL), via decreased DOPAL metabolism by aldehyde dehydrogenase (ALDH) and decreased vesicular sequestration of cytoplasmic dopamine by the vesicular monoamine transporter (VMAT). The results provide a novel mechanism for rotenone-induced toxicity in dopaminergic neurons.
线粒体复合体I抑制剂鱼藤酮的反复全身给药可产生帕金森病(PD)的啮齿动物模型。鱼藤酮相对选择性地损伤黑质纹状体多巴胺能神经元的机制仍未完全明确。根据“儿茶酚醛假说”,自毒性多巴胺代谢产物3,4-二羟基苯乙醛(DOPAL)的积累促成了PD的发病机制。囊泡摄取受阻会增加DOPAL水平,而DOPAL主要通过醛脱氢酶(ALDH)进行解毒。我们测试了鱼藤酮是否会干扰囊泡摄取和细胞内ALDH活性。在含有或不含有F-多巴胺(2 μM)的情况下,用鱼藤酮(0 - 1000 nM,180分钟)孵育PC12细胞,以追踪囊泡摄取和儿茶酚胺代谢,然后测量内源性和F标记的儿茶酚。鱼藤酮剂量依赖性地增加了DOPAL、F-DOPAL和3,4-二羟基苯乙醇(DOPET)水平,同时降低了多巴胺和3,4-二羟基苯乙酸(DOPAC)水平以及多巴胺与其脱氨基代谢产物总和的比值。在试管中,当提供NAD(+)时,鱼藤酮不影响ALDH将DOPAL转化为DOPAC,而直接作用的ALDH抑制剂苯菌灵显著增加了反应混合物中的DOPAL并降低了DOPAC浓度。我们提出,鱼藤酮通过降低ALDH活性和减弱细胞质儿茶酚胺的囊泡隔离来增加细胞内DOPAL。这些结果为鱼藤酮在多巴胺能神经元中诱导的选择性毒性提供了一种新机制。我们报告,作为一种能产生帕金森病动物模型的线粒体复合体I抑制剂,鱼藤酮通过醛脱氢酶(ALDH)降低DOPAL代谢以及通过囊泡单胺转运体(VMAT)减少细胞质多巴胺的囊泡隔离,从而增加有毒多巴胺代谢产物3,4-二羟基苯乙醛(DOPAL)的细胞内水平。这些结果为鱼藤酮诱导多巴胺能神经元毒性提供了一种新机制。