Suppr超能文献

噬菌体编码因子对RNA聚合酶的不同调控途径。

Distinct pathways of RNA polymerase regulation by a phage-encoded factor.

作者信息

Esyunina Daria, Klimuk Evgeny, Severinov Konstantin, Kulbachinskiy Andrey

机构信息

Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia;

Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia; Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia; and.

出版信息

Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):2017-22. doi: 10.1073/pnas.1416330112. Epub 2015 Feb 2.

Abstract

Transcription antitermination is a common strategy of gene expression regulation, but only a few transcription antitermination factors have been studied in detail. Here, we dissect the transcription antitermination mechanism of Xanthomonas oryzae virus Xp10 protein p7, which binds host RNA polymerase (RNAP) and regulates both transcription initiation and termination. We show that p7 suppresses intrinsic termination by decreasing RNAP pausing and increasing the transcription complex stability, in cooperation with host-encoded factor NusA. Uniquely, the antitermination activity of p7 depends on the ω subunit of the RNAP core and is modulated by ppGpp. In contrast, the inhibition of transcription initiation by p7 does not require ω but depends on other RNAP sites. Our results suggest that p7, a bifunctional transcription factor, uses distinct mechanisms to control different steps of transcription. We propose that regulatory functions of the ω subunit revealed by our analysis may extend to its homologs in eukaryotic RNAPs.

摘要

转录抗终止是基因表达调控的一种常见策略,但只有少数转录抗终止因子得到了详细研究。在此,我们剖析了水稻黄单胞菌病毒Xp10蛋白p7的转录抗终止机制,该蛋白与宿主RNA聚合酶(RNAP)结合并调控转录起始和终止。我们发现,p7与宿主编码因子NusA协同作用,通过减少RNAP暂停和增加转录复合物稳定性来抑制内在终止。独特的是,p7的抗终止活性依赖于RNAP核心的ω亚基,并受ppGpp调节。相比之下,p7对转录起始的抑制不依赖于ω,而是依赖于其他RNAP位点。我们的结果表明,双功能转录因子p7利用不同机制控制转录的不同步骤。我们提出,我们分析中揭示的ω亚基的调控功能可能扩展到其在真核RNAP中的同源物。

相似文献

1
Distinct pathways of RNA polymerase regulation by a phage-encoded factor.
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):2017-22. doi: 10.1073/pnas.1416330112. Epub 2015 Feb 2.
2
Structural basis for transcription antitermination at bacterial intrinsic terminator.
Nat Commun. 2019 Jul 11;10(1):3048. doi: 10.1038/s41467-019-10955-x.
5
Mapping of RNA polymerase residues that interact with bacteriophage Xp10 transcription antitermination factor p7.
J Mol Biol. 2008 Jan 4;375(1):29-35. doi: 10.1016/j.jmb.2007.10.054. Epub 2007 Oct 25.
7
A novel phage-encoded transcription antiterminator acts by suppressing bacterial RNA polymerase pausing.
Nucleic Acids Res. 2012 May;40(9):4052-63. doi: 10.1093/nar/gkr1285. Epub 2012 Jan 11.
8
Function of the Bacillus subtilis transcription elongation factor NusG in hairpin-dependent RNA polymerase pausing in the trp leader.
Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16131-6. doi: 10.1073/pnas.0808842105. Epub 2008 Oct 13.
9
Bacteriophage Xp10 anti-termination factor p7 induces forward translocation by host RNA polymerase.
Nucleic Acids Res. 2015 Jul 27;43(13):6299-308. doi: 10.1093/nar/gkv586. Epub 2015 Jun 1.

引用本文的文献

1
Structural basis of AlpA-dependent transcription antitermination.
Nucleic Acids Res. 2022 Aug 12;50(14):8321-8330. doi: 10.1093/nar/gkac608.
2
Development of ONT-cappable-seq to unravel the transcriptional landscape of phages.
Comput Struct Biotechnol J. 2022 May 23;20:2624-2638. doi: 10.1016/j.csbj.2022.05.034. eCollection 2022.
3
Control of a programmed cell death pathway in Pseudomonas aeruginosa by an antiterminator.
Nat Commun. 2021 Mar 17;12(1):1702. doi: 10.1038/s41467-021-21941-7.
4
Structural basis for transcription antitermination at bacterial intrinsic terminator.
Nat Commun. 2019 Jul 11;10(1):3048. doi: 10.1038/s41467-019-10955-x.
5
The Mechanisms of Substrate Selection, Catalysis, and Translocation by the Elongating RNA Polymerase.
J Mol Biol. 2019 Sep 20;431(20):3975-4006. doi: 10.1016/j.jmb.2019.05.042. Epub 2019 May 31.
6
Altered Distribution of RNA Polymerase Lacking the Omega Subunit within the Prophages along the K-12 Genome.
mSystems. 2018 Feb 13;3(1). doi: 10.1128/mSystems.00172-17. eCollection 2018 Jan-Feb.
8
Regulation of transcriptional pausing through the secondary channel of RNA polymerase.
Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):8699-704. doi: 10.1073/pnas.1603531113. Epub 2016 Jul 18.
10
Lineage-specific variations in the trigger loop modulate RNA proofreading by bacterial RNA polymerases.
Nucleic Acids Res. 2016 Feb 18;44(3):1298-308. doi: 10.1093/nar/gkv1521. Epub 2016 Jan 4.

本文引用的文献

1
RNA polymerase pausing and nascent-RNA structure formation are linked through clamp-domain movement.
Nat Struct Mol Biol. 2014 Sep;21(9):794-802. doi: 10.1038/nsmb.2867. Epub 2014 Aug 10.
2
Interactions between RNA polymerase and the "core recognition element" counteract pausing.
Science. 2014 Jun 13;344(6189):1285-9. doi: 10.1126/science.1253458.
3
A pause sequence enriched at translation start sites drives transcription dynamics in vivo.
Science. 2014 May 30;344(6187):1042-7. doi: 10.1126/science.1251871. Epub 2014 May 1.
4
Structural basis for promoter specificity switching of RNA polymerase by a phage factor.
Genes Dev. 2014 Mar 1;28(5):521-31. doi: 10.1101/gad.233916.113.
5
A bacteriophage transcription regulator inhibits bacterial transcription initiation by σ-factor displacement.
Nucleic Acids Res. 2014 Apr;42(7):4294-305. doi: 10.1093/nar/gku080. Epub 2014 Jan 30.
7
Inactivation of the bacterial RNA polymerase due to acquisition of secondary structure by the ω subunit.
J Biol Chem. 2013 Aug 30;288(35):25076-25087. doi: 10.1074/jbc.M113.468520. Epub 2013 Jul 10.
8
Mechanism of eukaryotic RNA polymerase III transcription termination.
Science. 2013 Jun 28;340(6140):1577-80. doi: 10.1126/science.1237934.
9
Cys-pair reporters detect a constrained trigger loop in a paused RNA polymerase.
Mol Cell. 2013 Jun 27;50(6):882-93. doi: 10.1016/j.molcel.2013.05.015. Epub 2013 Jun 13.
10
The mechanism of E. coli RNA polymerase regulation by ppGpp is suggested by the structure of their complex.
Mol Cell. 2013 May 9;50(3):430-6. doi: 10.1016/j.molcel.2013.03.020. Epub 2013 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验