Suppr超能文献

与噬菌体Xp10转录抗终止因子p7相互作用的RNA聚合酶残基的定位

Mapping of RNA polymerase residues that interact with bacteriophage Xp10 transcription antitermination factor p7.

作者信息

Yuzenkova Yulia, Zenkin Nikolay, Severinov Konstantin

机构信息

Waksman Institute for Microbiology Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.

出版信息

J Mol Biol. 2008 Jan 4;375(1):29-35. doi: 10.1016/j.jmb.2007.10.054. Epub 2007 Oct 25.

Abstract

Bacteriophage Xp10-encoded transcription factor p7 interacts with host Xanthomonas oryzae RNA polymerase beta' subunit and prevents both promoter recognition by the RNA polymerase holoenzyme and transcription termination by the RNA polymerase core. P7 does not bind to and has no effect on RNA polymerase from Escherichia coli. Here, we use a combination of biochemical and genetic methods to map the p7 interaction site to within four beta' amino acid residues at the N terminus of X. oryzae RNAP beta'. The interaction site is located in an area that is close to the promoter spacer in the open complex and to the upstream boundary of the transcription bubble in the elongation complex, providing a possible explanation of how a small protein can affect both transcription initiation and termination by binding to the same RNA polymerase site.

摘要

噬菌体Xp10编码的转录因子p7与宿主水稻黄单胞菌RNA聚合酶β'亚基相互作用,既能阻止RNA聚合酶全酶对启动子的识别,又能阻止RNA聚合酶核心酶的转录终止。P7不与大肠杆菌的RNA聚合酶结合,对其也没有影响。在这里,我们结合生化和遗传方法,将p7相互作用位点定位到水稻黄单胞菌RNAP β'亚基N端的四个β'氨基酸残基范围内。该相互作用位点位于开放复合物中靠近启动子间隔区以及延伸复合物中转录泡上游边界的区域,这为一个小蛋白如何通过结合到同一个RNA聚合酶位点来影响转录起始和终止提供了一种可能的解释。

相似文献

1
Mapping of RNA polymerase residues that interact with bacteriophage Xp10 transcription antitermination factor p7.
J Mol Biol. 2008 Jan 4;375(1):29-35. doi: 10.1016/j.jmb.2007.10.054. Epub 2007 Oct 25.
4
Bacteriophage Xp10 anti-termination factor p7 induces forward translocation by host RNA polymerase.
Nucleic Acids Res. 2015 Jul 27;43(13):6299-308. doi: 10.1093/nar/gkv586. Epub 2015 Jun 1.
5
Structural basis for transcription antitermination at bacterial intrinsic terminator.
Nat Commun. 2019 Jul 11;10(1):3048. doi: 10.1038/s41467-019-10955-x.
6
A bacteriophage transcription regulator inhibits bacterial transcription initiation by σ-factor displacement.
Nucleic Acids Res. 2014 Apr;42(7):4294-305. doi: 10.1093/nar/gku080. Epub 2014 Jan 30.
8
Distinct pathways of RNA polymerase regulation by a phage-encoded factor.
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):2017-22. doi: 10.1073/pnas.1416330112. Epub 2015 Feb 2.

引用本文的文献

1
Efficient termination of transcription by RNA polymerase I requires a conserved hairpin of the ribosomal RNA precursor.
Sci Adv. 2025 Aug 22;11(34):eadw2470. doi: 10.1126/sciadv.adw2470. Epub 2025 Aug 20.
2
Structural basis for transcription antitermination at bacterial intrinsic terminator.
Nat Commun. 2019 Jul 11;10(1):3048. doi: 10.1038/s41467-019-10955-x.
4
The interaction of ω2 with the RNA polymerase β' subunit functions as an activation to repression switch.
Nucleic Acids Res. 2015 Oct 30;43(19):9249-61. doi: 10.1093/nar/gkv788. Epub 2015 Aug 3.
5
Bacteriophage Xp10 anti-termination factor p7 induces forward translocation by host RNA polymerase.
Nucleic Acids Res. 2015 Jul 27;43(13):6299-308. doi: 10.1093/nar/gkv586. Epub 2015 Jun 1.
6
Distinct pathways of RNA polymerase regulation by a phage-encoded factor.
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):2017-22. doi: 10.1073/pnas.1416330112. Epub 2015 Feb 2.
7
Transcription regulation mechanisms of bacteriophages: recent advances and future prospects.
Bioengineered. 2014 Sep-Oct;5(5):300-4. doi: 10.4161/bioe.32110.
8
The sabotage of the bacterial transcription machinery by a small bacteriophage protein.
Bacteriophage. 2014 Jan 1;4(1):e28520. doi: 10.4161/bact.28520. Epub 2014 Mar 12.
9
A bacteriophage transcription regulator inhibits bacterial transcription initiation by σ-factor displacement.
Nucleic Acids Res. 2014 Apr;42(7):4294-305. doi: 10.1093/nar/gku080. Epub 2014 Jan 30.
10
Learning from bacteriophages - advantages and limitations of phage and phage-encoded protein applications.
Curr Protein Pept Sci. 2012 Dec;13(8):699-722. doi: 10.2174/138920312804871193.

本文引用的文献

1
Structural basis for transcription elongation by bacterial RNA polymerase.
Nature. 2007 Jul 12;448(7150):157-62. doi: 10.1038/nature05932. Epub 2007 Jun 20.
2
A novel lysozyme from Xanthomonas oryzae phage varphiXo411 active against Xanthomonas and Stenotrophomonas.
Protein Expr Purif. 2006 Dec;50(2):229-37. doi: 10.1016/j.pep.2006.06.013. Epub 2006 Jun 27.
3
Role of DNA bubble rewinding in enzymatic transcription termination.
Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):4870-5. doi: 10.1073/pnas.0600145103. Epub 2006 Mar 21.
4
The tale of two RNA polymerases: transcription profiling and gene expression strategy of bacteriophage Xp10.
Mol Microbiol. 2005 Feb;55(3):764-77. doi: 10.1111/j.1365-2958.2004.04442.x.
6
A regulator that inhibits transcription by targeting an intersubunit interaction of the RNA polymerase holoenzyme.
Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4554-9. doi: 10.1073/pnas.0400923101. Epub 2004 Mar 22.
7
A bacterial two-hybrid system based on transcription activation.
Methods Mol Biol. 2004;261:231-46. doi: 10.1385/1-59259-762-9:231.
8
Bacteriophage-induced modifications of host RNA polymerase.
Annu Rev Microbiol. 2003;57:301-22. doi: 10.1146/annurev.micro.57.030502.090942.
9
Genome of Xanthomonas oryzae bacteriophage Xp10: an odd T-odd phage.
J Mol Biol. 2003 Jul 18;330(4):735-48. doi: 10.1016/s0022-2836(03)00634-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验