Institute for Integrative Nanosciences, IFW-Dresden , Helmholtzstrasse 20, 01069 Dresden, Germany.
ACS Nano. 2015 Feb 24;9(2):1198-205. doi: 10.1021/nn5048052. Epub 2015 Feb 5.
The large capacity loss and huge volume change of silicon anodes severely restricts their practical applications in lithium ion batteries. In this contribution, the sandwich nanoarchitecture of rolled-up Si/reduced graphene oxide bilayer nanomembranes was designed via a strain released strategy. Within this nanoarchitecture, the inner void space and the mechanical feature of nanomembranes can help to buffer the strain during lithiation/delithiation; the alternately stacked conductive rGO layers can protect the Si layers from excessive formation of SEI layers. As anodes for lithium-ion batteries, the sandwiched Si/rGO nanoarchitecture demonstrates long cycling life of 2000 cycles at 3 A g(-1) with a capacity degradation of only 3.3% per 100 cycles.
硅阳极的大容量损失和巨大的体积变化严重限制了它们在锂离子电池中的实际应用。在本研究中,通过应变释放策略设计了卷绕式 Si/还原氧化石墨烯双层纳米膜的夹层纳米结构。在这种纳米结构中,纳米膜的内部空隙和机械特性有助于在锂化/脱锂过程中缓冲应变;交替堆叠的导电 rGO 层可以防止 Si 层形成过多的 SEI 层。作为锂离子电池的阳极,夹层 Si/rGO 纳米结构在 3 A g(-1)的电流密度下循环 2000 次后,容量仅以 3.3%/100 次的速率衰减,表现出长循环寿命。