Suppr超能文献

通过三维纳米结构设计实现的超稳定硅阳极

Ultrastable Silicon Anode by Three-Dimensional Nanoarchitecture Design.

作者信息

Huang Gang, Han Jiuhui, Lu Zhen, Wei Daixiu, Kashani Hamzeh, Watanabe Kentaro, Chen Mingwei

机构信息

Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.

WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.

出版信息

ACS Nano. 2020 Apr 28;14(4):4374-4382. doi: 10.1021/acsnano.9b09928. Epub 2020 Mar 24.

Abstract

State-of-the-art carbonaceous anodes are approaching their achievable performance limit in Li-ion batteries (LIBs). Silicon has been recognized as one of the most promising anodes for next-generation LIBs because of its advantageous specific capacity and secure working potential. However, the practical implementation of silicon anodes needs to overcome the challenges of substantial volume changes, intrinsic low conductivity, and unstable solid electrolyte interphase (SEI) films. Here, we report an inventive design of a sandwich -doped graphene@Si@hybrid silicate anode with bicontinuous porous nanoarchitecture, which is expected to simultaneously conquer all these critical issues. In the ingeniously designed hybrid Si anode, the nanoporous -doped graphene acts as a flexible and conductive support and the amorphous hybrid silicate coating enhances the robustness and suppleness of the electrode and facilitates the formation of stable SEI films. This binder-free and stackable hybrid electrode achieves excellent rate capability and cycling performance (817 mAh/g at 5 for 10 000 cycles). Paired with LiFePO cathodes, more than 100 stable cycles can be readily realized in full batteries.

摘要

目前最先进的碳质阳极在锂离子电池(LIBs)中已接近其可实现的性能极限。硅因其有利的比容量和安全的工作电位,已被公认为下一代LIBs最有前景的阳极材料之一。然而,硅阳极的实际应用需要克服体积大幅变化、固有低导电性以及不稳定的固体电解质界面(SEI)膜等挑战。在此,我们报道了一种具有双连续多孔纳米结构的三明治掺杂石墨烯@Si@混合硅酸盐阳极的创新设计,有望同时攻克所有这些关键问题。在这种巧妙设计的混合硅阳极中,纳米多孔掺杂石墨烯作为柔性导电支撑体,非晶态混合硅酸盐涂层增强了电极的坚固性和柔韧性,并有助于形成稳定的SEI膜。这种无粘结剂且可堆叠的混合电极具有出色的倍率性能和循环性能(在5 时为817 mAh/g,循环10000次)。与磷酸铁锂阴极配对,全电池中可轻松实现100多次稳定循环。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验