Moschetta Eric G, Sakwa-Novak Miles A, Greenfield Jake L, Jones Christopher W
School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , 311 Ferst Drive NW, Atlanta, Georgia 30332, United States.
Langmuir. 2015 Feb 24;31(7):2218-27. doi: 10.1021/la5046817. Epub 2015 Feb 10.
An anhydrous synthesis of aminosilica materials from alkyl halide-functionalized mesoporous SBA-15 silica by post-grafting amination is introduced for applications in CO2 adsorption, cooperative catalysis, and (15)N solid-state NMR spectroscopy. The synthesis is demonstrated to convert terminal alkyl halide-functionalized silica materials containing Cl, Br, and I to primary alkylamines using anhydrous ammonia in a high-pressure reactor. The benefits of the post-grafting amination procedure include (i) use of anhydrous isotopically labeled ammonia, (15)NH3, to create aminosilica materials that can be investigated using (15)N solid-state NMR to elucidate potential intermediates and surface species in CO2 adsorption processes and catalysis, (ii) similar CO2 uptake in experiments extracting CO2 from dry simulated air experiments, and (iii) improved activity in acid-base bifunctional catalysis compared to traditional amine-grafted materials. The effects of the type of halide, the initial halide loading, and the total reaction time on the conversion of the halides to primary amines are explored. Physical and chemical characterizations of the materials show that the textural properties of the silica are unaffected by the reaction conditions and that quantitative conversion to primary amines is achieved even at short reaction times and high initial alkyl halide loadings. Additionally, preliminary (15)N solid-state NMR experiments indicate formation of nitrogen-containing species and demonstrate that the synthesis can be used to create materials useful for investigating surface species by NMR spectroscopy. The differences between the materials prepared via post-grafting amination vs traditional aminosilane grafting are attributed to the slightly increased spacing of the amines synthesized by amination because the alkylhalosilanes are initially better spaced on the silica surface after grafting, whereas the aminosilanes likely cluster to a greater extent when grafted on the silica surface. A slight increase in amine spacing allows for more effective amine-silanol interactions in cooperative catalysis without reducing the amine efficiency in CO2 uptake under the conditions used here.
介绍了一种通过后接枝胺化从卤代烷基官能化的介孔SBA - 15二氧化硅无水合成氨基二氧化硅材料的方法,用于二氧化碳吸附、协同催化和(15)N固态核磁共振光谱。该合成方法证明了在高压反应器中使用无水氨将含有Cl、Br和I的末端卤代烷基官能化二氧化硅材料转化为伯烷基胺。后接枝胺化过程的优点包括:(i)使用无水同位素标记的氨(15)NH₃来制备氨基二氧化硅材料,该材料可通过(15)N固态核磁共振进行研究,以阐明二氧化碳吸附过程和催化中的潜在中间体和表面物种;(ii)在从干燥模拟空气中提取二氧化碳的实验中,二氧化碳吸收量相似;(iii)与传统胺接枝材料相比,酸碱双功能催化活性有所提高。探讨了卤化物类型、初始卤化物负载量和总反应时间对卤化物转化为伯胺的影响。材料的物理和化学表征表明,二氧化硅的结构性质不受反应条件影响,即使在短反应时间和高初始烷基卤化物负载量下也能实现向伯胺的定量转化。此外,初步的(15)N固态核磁共振实验表明形成了含氮物种,并证明该合成方法可用于制备通过核磁共振光谱研究表面物种的有用材料。通过后接枝胺化与传统氨基硅烷接枝制备的材料之间的差异归因于胺化合成的胺间距略有增加,因为卤代烷基硅烷在接枝后最初在二氧化硅表面的间距更好,而氨基硅烷接枝到二氧化硅表面时可能会更大程度地聚集。胺间距的轻微增加使得在协同催化中胺 - 硅醇相互作用更有效,而不会降低在此处使用的条件下二氧化碳吸收中的胺效率。