Suppr超能文献

沿纬度梯度年龄依赖性可塑性遗传方差的个体发生变化。

Ontogenetic changes in genetic variances of age-dependent plasticity along a latitudinal gradient.

作者信息

Nilsson-Örtman V, Rogell B, Stoks R, Johansson F

机构信息

Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.

Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.

出版信息

Heredity (Edinb). 2015 Oct;115(4):366-78. doi: 10.1038/hdy.2014.126. Epub 2015 Feb 4.

Abstract

The expression of phenotypic plasticity may differ among life stages of the same organism. Age-dependent plasticity can be important for adaptation to heterogeneous environments, but this has only recently been recognized. Whether age-dependent plasticity is a common outcome of local adaptation and whether populations harbor genetic variation in this respect remains largely unknown. To answer these questions, we estimated levels of additive genetic variation in age-dependent plasticity in six species of damselflies sampled from 18 populations along a latitudinal gradient spanning 3600 km. We reared full sib larvae at three temperatures and estimated genetic variances in the height and slope of thermal reaction norms of body size at three points in time during ontogeny using random regression. Our data show that most populations harbor genetic variation in growth rate (reaction norm height) in all ontogenetic stages, but only some populations and ontogenetic stages were found to harbor genetic variation in thermal plasticity (reaction norm slope). Genetic variances in reaction norm height differed among species, while genetic variances in reaction norm slope differed among populations. The slope of the ontogenetic trend in genetic variances of both reaction norm height and slope increased with latitude. We propose that differences in genetic variances reflect temporal and spatial variation in the strength and direction of natural selection on growth trajectories and age-dependent plasticity. Selection on age-dependent plasticity may depend on the interaction between temperature seasonality and time constraints associated with variation in life history traits such as generation length.

摘要

表型可塑性的表达在同一生物体的不同生命阶段可能有所不同。年龄依赖性可塑性对于适应异质环境可能很重要,但直到最近才被认识到。年龄依赖性可塑性是否是局部适应的常见结果,以及种群在这方面是否存在遗传变异,在很大程度上仍然未知。为了回答这些问题,我们估计了从沿着3600公里纬度梯度的18个种群中采样的六种豆娘的年龄依赖性可塑性的加性遗传变异水平。我们在三种温度下饲养全同胞幼虫,并使用随机回归估计个体发育过程中三个时间点身体大小的热反应规范的高度和斜率的遗传方差。我们的数据表明,大多数种群在所有个体发育阶段的生长速率(反应规范高度)都存在遗传变异,但只有一些种群和个体发育阶段在热可塑性(反应规范斜率)方面存在遗传变异。反应规范高度的遗传方差在不同物种之间存在差异,而反应规范斜率的遗传方差在不同种群之间存在差异。反应规范高度和斜率的遗传方差的个体发育趋势斜率随纬度增加。我们提出,遗传方差的差异反映了自然选择对生长轨迹和年龄依赖性可塑性的强度和方向的时间和空间变化。对年龄依赖性可塑性的选择可能取决于温度季节性与与世代长度等生活史特征变化相关的时间限制之间的相互作用。

相似文献

1
Ontogenetic changes in genetic variances of age-dependent plasticity along a latitudinal gradient.
Heredity (Edinb). 2015 Oct;115(4):366-78. doi: 10.1038/hdy.2014.126. Epub 2015 Feb 4.
2
Seasonal time constraints reduce genetic variation in life-history traits along a latitudinal gradient.
J Anim Ecol. 2016 Jan;85(1):187-98. doi: 10.1111/1365-2656.12442. Epub 2015 Oct 5.
4
Latitudinally structured variation in the temperature dependence of damselfly growth rates.
Ecol Lett. 2013 Jan;16(1):64-71. doi: 10.1111/ele.12013. Epub 2012 Oct 11.
5
Maintenance of genetic variation in phenotypic plasticity: the role of environmental variation.
Genet Res. 2000 Dec;76(3):295-304. doi: 10.1017/s0016672300004729.
6
Thermal plasticity in Drosophila melanogaster populations from eastern Australia: quantitative traits to transcripts.
J Evol Biol. 2016 Dec;29(12):2447-2463. doi: 10.1111/jeb.12969. Epub 2016 Sep 9.
7
Adaptive phenotypic plasticity and genetics of larval life histories in two Rana temporaria populations.
Evolution. 2002 Mar;56(3):617-27. doi: 10.1111/j.0014-3820.2002.tb01371.x.
8
Mixed support for an alignment between phenotypic plasticity and genetic differentiation in damselfly wing shape.
J Evol Biol. 2023 Feb;36(2):368-380. doi: 10.1111/jeb.14145. Epub 2022 Dec 26.

引用本文的文献

2
Vegetative phase change causes age-dependent changes in phenotypic plasticity.
New Phytol. 2023 Oct;240(2):613-625. doi: 10.1111/nph.19174. Epub 2023 Aug 12.
3
Age-dependent genetic architecture across ontogeny of body size in sticklebacks.
Proc Biol Sci. 2022 May 25;289(1975):20220352. doi: 10.1098/rspb.2022.0352. Epub 2022 May 18.
4
Does Body Shape in Adapt to Variation in Habitat Salinity?
Front Physiol. 2019 Nov 15;10:1400. doi: 10.3389/fphys.2019.01400. eCollection 2019.
5
Bayesian, Likelihood-Free Modelling of Phenotypic Plasticity and Variability in Individuals and Populations.
Front Genet. 2019 Sep 20;10:727. doi: 10.3389/fgene.2019.00727. eCollection 2019.
6
Linking thermal adaptation and life-history theory explains latitudinal patterns of voltinism.
Philos Trans R Soc Lond B Biol Sci. 2019 Aug 5;374(1778):20180547. doi: 10.1098/rstb.2018.0547. Epub 2019 Jun 17.
7
Variability in life-history switch points across and within populations explained by Adaptive Dynamics.
J R Soc Interface. 2018 Nov 14;15(148):20180371. doi: 10.1098/rsif.2018.0371.
8
Development of G: a test in an amphibious fish.
Heredity (Edinb). 2019 May;122(5):696-708. doi: 10.1038/s41437-018-0152-4. Epub 2018 Oct 16.
9
Microgeographic differentiation in thermal performance curves between rural and urban populations of an aquatic insect.
Evol Appl. 2017 Aug 2;10(10):1067-1075. doi: 10.1111/eva.12512. eCollection 2017 Dec.

本文引用的文献

1
QUANTITATIVE GENETICS AND THE EVOLUTION OF REACTION NORMS.
Evolution. 1992 Apr;46(2):390-411. doi: 10.1111/j.1558-5646.1992.tb02047.x.
3
GENOTYPE-ENVIRONMENT INTERACTION AND THE EVOLUTION OF PHENOTYPIC PLASTICITY.
Evolution. 1985 May;39(3):505-522. doi: 10.1111/j.1558-5646.1985.tb00391.x.
4
The evolution of age-dependent plasticity.
Am Nat. 2014 Jan;183(1):108-25. doi: 10.1086/674008. Epub 2013 Nov 12.
5
Quantitative genetic divergence and standing genetic (co)variance in thermal reaction norms along latitude.
Evolution. 2013 Aug;67(8):2385-99. doi: 10.1111/evo.12138. Epub 2013 May 22.
6
Latitudinally structured variation in the temperature dependence of damselfly growth rates.
Ecol Lett. 2013 Jan;16(1):64-71. doi: 10.1111/ele.12013. Epub 2012 Oct 11.
7
Genetics and evolution of function-valued traits: understanding environmentally responsive phenotypes.
Trends Ecol Evol. 2012 Nov;27(11):637-47. doi: 10.1016/j.tree.2012.07.002. Epub 2012 Aug 14.
8
Comparing evolvabilities: common errors surrounding the calculation and use of coefficients of additive genetic variation.
Evolution. 2012 Aug;66(8):2341-9. doi: 10.1111/j.1558-5646.2011.01565.x. Epub 2012 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验