Suppr超能文献

在刺鱼的体型发育过程中,年龄相关的遗传结构。

Age-dependent genetic architecture across ontogeny of body size in sticklebacks.

机构信息

Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014, Finland.

CSIRO Agriculture and Food, GPO Box 1600, Canberra, ACT 2601, Australia.

出版信息

Proc Biol Sci. 2022 May 25;289(1975):20220352. doi: 10.1098/rspb.2022.0352. Epub 2022 May 18.

Abstract

Heritable variation in traits under natural selection is a prerequisite for evolutionary response. While it is recognized that trait heritability may vary spatially and temporally depending on which environmental conditions traits are expressed under, less is known about the possibility that genetic variance contributing to the expected selection response in a given trait may vary at different stages of ontogeny. Specifically, whether different loci underlie the expression of a trait throughout development and thus providing an additional source of variation for selection to act on in the wild, is unclear. Here we show that body size, an important life-history trait, is heritable throughout ontogeny in the nine-spined stickleback (). Nevertheless, both analyses of quantitative trait loci and genetic correlations across ages show that different chromosomes/loci contribute to this heritability in different ontogenic time-points. This suggests that body size can respond to selection at different stages of ontogeny but that this response is determined by different loci at different points of development. Hence, our study provides important results regarding our understanding of the genetics of ontogeny and opens an interesting avenue of research for studying age-specific genetic architecture as a source of non-parallel evolution.

摘要

在自然选择下,性状的可遗传性变异是进化反应的前提。虽然人们认识到,性状的遗传力可能会因性状在不同环境条件下的表达而在空间和时间上有所不同,但对于影响特定性状预期选择反应的遗传方差在个体发育的不同阶段可能发生变化的可能性知之甚少。具体来说,一个性状在整个发育过程中的表达是否由不同的基因座决定,从而为选择在野外作用提供了额外的变异来源,这一点尚不清楚。在这里,我们表明,身体大小是一种重要的生活史性状,在九刺鱼()的整个个体发育过程中都是可遗传的。然而,数量性状基因座分析和不同年龄的遗传相关性都表明,不同的染色体/基因座在不同的个体发育时间点对这种遗传力有贡献。这表明,身体大小可以在个体发育的不同阶段对选择做出反应,但这种反应是由不同的基因座在不同的发育点决定的。因此,我们的研究提供了关于我们对个体发育遗传学理解的重要结果,并为研究作为非平行进化来源的年龄特异性遗传结构开辟了一个有趣的研究途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33f3/9118060/8381f3804666/rspb20220352f01.jpg

相似文献

1
Age-dependent genetic architecture across ontogeny of body size in sticklebacks.
Proc Biol Sci. 2022 May 25;289(1975):20220352. doi: 10.1098/rspb.2022.0352. Epub 2022 May 18.
2
Quantitative trait loci for growth and body size in the nine-spined stickleback Pungitius pungitius L.
Mol Ecol. 2013 Dec;22(23):5861-76. doi: 10.1111/mec.12526. Epub 2013 Nov 5.
3
Heterogeneous genomic architecture of skeletal armour traits in sticklebacks.
J Evol Biol. 2024 Aug 27;37(9):995-1008. doi: 10.1093/jeb/voae083.
4
Deciphering the genomic architecture of the stickleback brain with a novel multilocus gene-mapping approach.
Mol Ecol. 2017 Mar;26(6):1557-1575. doi: 10.1111/mec.14005. Epub 2017 Jan 27.
5
Ontogenetic and evolutionary effects of predation and competition on nine-spined stickleback (Pungitius pungitius) body size.
J Anim Ecol. 2012 Jul;81(4):859-67. doi: 10.1111/j.1365-2656.2012.01971.x. Epub 2012 Mar 27.
6
Rensch's rule inverted--female-driven gigantism in nine-spined stickleback Pungitius pungitius.
J Anim Ecol. 2010 May;79(3):581-8. doi: 10.1111/j.1365-2656.2010.01665.x. Epub 2010 Feb 19.
7
The genetic and molecular architecture of phenotypic diversity in sticklebacks.
Philos Trans R Soc Lond B Biol Sci. 2017 Feb 5;372(1713). doi: 10.1098/rstb.2015.0486.
8
Nine-spined stickleback (Pungitius pungitius): an emerging model for evolutionary biology research.
Ann N Y Acad Sci. 2013 Jun;1289:18-35. doi: 10.1111/nyas.12089. Epub 2013 Mar 29.

本文引用的文献

1
Population Structure Limits Parallel Evolution in Sticklebacks.
Mol Biol Evol. 2021 Sep 27;38(10):4205-4221. doi: 10.1093/molbev/msab144.
2
Genetic population structure constrains local adaptation in sticklebacks.
Mol Ecol. 2021 May;30(9):1946-1961. doi: 10.1111/mec.15808. Epub 2021 Feb 10.
3
Reflections on the Predictability of Evolution: Toward a Conceptual Framework.
iScience. 2020 Oct 27;23(11):101736. doi: 10.1016/j.isci.2020.101736. eCollection 2020 Nov 20.
4
The genetic architecture of maternal effects across ontogeny in the red deer.
Evolution. 2020 Jul;74(7):1378-1391. doi: 10.1111/evo.14000. Epub 2020 Jun 8.
5
Estimation of dynamic SNP-heritability with Bayesian Gaussian process models.
Bioinformatics. 2020 Jun 1;36(12):3795-3802. doi: 10.1093/bioinformatics/btaa199.
7
Genetic redundancy fuels polygenic adaptation in Drosophila.
PLoS Biol. 2019 Feb 4;17(2):e3000128. doi: 10.1371/journal.pbio.3000128. eCollection 2019 Feb.
8
Predicting evolutionary predictability.
Mol Ecol. 2018 Jun;27(12):2647-2650. doi: 10.1111/mec.14716.
9
Evolutionary genetics of personality in the Trinidadian guppy I: maternal and additive genetic effects across ontogeny.
Heredity (Edinb). 2019 Jan;122(1):1-14. doi: 10.1038/s41437-018-0082-1. Epub 2018 May 17.
10
Linkage disequilibrium clustering-based approach for association mapping with tightly linked genomewide data.
Mol Ecol Resour. 2018 Jul;18(4):809-824. doi: 10.1111/1755-0998.12893. Epub 2018 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验