Suppr超能文献

用于半连续数据的贝叶斯两部分空间模型及其在急诊科支出中的应用。

Bayesian two-part spatial models for semicontinuous data with application to emergency department expenditures.

作者信息

Neelon Brian, Zhu Li, Neelon Sara E Benjamin

机构信息

Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon Street Suite 303, MSC 835, Charleston, SC 29425, USA

Department of Biostatistics, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261, USA.

出版信息

Biostatistics. 2015 Jul;16(3):465-79. doi: 10.1093/biostatistics/kxu062. Epub 2015 Feb 2.

Abstract

In health services research, it is common to encounter semicontinuous data characterized by a point mass at zero and a continuous distribution of positive values. Examples include medical expenditures, in which the zeros represent patients who do not use health services, while the continuous distribution describes the level of expenditures among users. Semicontinuous data are customarily analyzed using two-part mixture models. In the spatial analysis of semicontinuous data, two-part models are especially appealing because they provide a joint picture of how health services utilization and associated expenditures vary across geographic regions. However, when applying these models, careful attention must be paid to distributional choices, as model misspecification can lead to biased and imprecise inferences. This paper introduces a broad class of Bayesian two-part models for the spatial analysis of semicontinuous data. Specific models considered include two-part lognormal, log skew-elliptical, and Bayesian non-parametric models. Multivariate conditionally autoregressive priors are used to link model components and provide spatial smoothing across neighboring regions, resulting in a joint spatial modeling framework for health utilization and expenditures. We develop a fully conjugate Gibbs sampling scheme, leading to efficient posterior computation. We illustrate the approach using data from a recent study of emergency department expenditures.

摘要

在卫生服务研究中,经常会遇到半连续数据,其特征是在零处有一个点质量以及正值的连续分布。示例包括医疗支出,其中零表示未使用卫生服务的患者,而连续分布描述了使用者之间的支出水平。半连续数据通常使用两部分混合模型进行分析。在半连续数据的空间分析中,两部分模型特别有吸引力,因为它们提供了一幅关于卫生服务利用情况和相关支出如何在不同地理区域变化的联合图景。然而,在应用这些模型时,必须仔细关注分布选择,因为模型设定错误可能导致有偏差和不准确的推断。本文介绍了一类用于半连续数据空间分析的广义贝叶斯两部分模型。所考虑的具体模型包括两部分对数正态模型、对数偏态椭圆模型和贝叶斯非参数模型。使用多变量条件自回归先验来链接模型组件并在相邻区域提供空间平滑,从而形成一个用于卫生利用和支出的联合空间建模框架。我们开发了一种完全共轭吉布斯抽样方案,从而实现高效的后验计算。我们使用最近一项关于急诊科支出研究的数据来说明该方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验