Suppr超能文献

使用小波变换和机器学习技术对脑电图(EEG)信号进行特征提取和分类。

Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques.

作者信息

Amin Hafeez Ullah, Malik Aamir Saeed, Ahmad Rana Fayyaz, Badruddin Nasreen, Kamel Nidal, Hussain Muhammad, Chooi Weng-Tink

机构信息

Department of Electrical & Electronic Engineering, Centre for Intelligent Signal & Imaging Research (CISIR), Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750, Tronoh, Perak, Malaysia,

出版信息

Australas Phys Eng Sci Med. 2015 Mar;38(1):139-49. doi: 10.1007/s13246-015-0333-x. Epub 2015 Feb 4.

Abstract

This paper describes a discrete wavelet transform-based feature extraction scheme for the classification of EEG signals. In this scheme, the discrete wavelet transform is applied on EEG signals and the relative wavelet energy is calculated in terms of detailed coefficients and the approximation coefficients of the last decomposition level. The extracted relative wavelet energy features are passed to classifiers for the classification purpose. The EEG dataset employed for the validation of the proposed method consisted of two classes: (1) the EEG signals recorded during the complex cognitive task--Raven's advance progressive metric test and (2) the EEG signals recorded in rest condition--eyes open. The performance of four different classifiers was evaluated with four performance measures, i.e., accuracy, sensitivity, specificity and precision values. The accuracy was achieved above 98 % by the support vector machine, multi-layer perceptron and the K-nearest neighbor classifiers with approximation (A4) and detailed coefficients (D4), which represent the frequency range of 0.53-3.06 and 3.06-6.12 Hz, respectively. The findings of this study demonstrated that the proposed feature extraction approach has the potential to classify the EEG signals recorded during a complex cognitive task by achieving a high accuracy rate.

摘要

本文描述了一种基于离散小波变换的脑电信号分类特征提取方案。在该方案中,对脑电信号应用离散小波变换,并根据最后分解级别的细节系数和近似系数计算相对小波能量。提取的相对小波能量特征被传递给分类器用于分类目的。用于验证所提方法的脑电数据集由两类组成:(1) 在复杂认知任务——瑞文高级渐进矩阵测验期间记录的脑电信号;(2) 在静息状态——睁眼时记录的脑电信号。使用四种性能指标评估了四种不同分类器的性能,即准确率、灵敏度、特异性和精确率值。支持向量机、多层感知器和K近邻分类器利用近似系数(A4)和细节系数(D4)实现了高于98%的准确率,它们分别代表0.53 - 3.06 Hz和3.06 - 6.12 Hz的频率范围。本研究结果表明,所提特征提取方法通过实现高准确率,具有对复杂认知任务期间记录的脑电信号进行分类的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验