Gao Feng, Roy Scott W, Katz Laura A
Department of Biology, San Francisco State University, San Francisco, California, USA.
mBio. 2015 Feb 3;6(1):e01998-14. doi: 10.1128/mBio.01998-14.
Chromosome rearrangements occur in a variety of eukaryotic life cycles, including during the development of the somatic macronuclear genome in ciliates. Previous work on the phyllopharyngean ciliate Chilodonella uncinata revealed that macronuclear β-tubulin and protein kinase gene families share alternatively processed germ line segments nested within divergent regions. To study genome evolution in this ciliate further, we characterized two additional alternatively processed gene families from two cryptic species of the ciliate morphospecies C. uncinata: those encoding histidine acid phosphatase protein (Hap) and leishmanolysin family protein (Lei). Analyses of the macronuclear Hap and Lei sequences reveal that each gene family consists of three members in the macronucleus that are marked by identical regions nested among highly divergent regions. Investigation of the micronuclear Hap sequences revealed a complex pattern in which the three macronuclear sequences are derived either from a single micronuclear region or from a combination of this shared region recombined with additional duplicate micronuclear copies of Hap. We propose a model whereby gene scrambling evolves by gene duplication followed by partial and reciprocal degradation of the duplicate sequences. In this model, alternative processing represents an intermediate step in the evolution of scrambled genes. Finally, we speculate on the possible role of genome architecture in speciation in ciliates by describing what might happen if changes in alternatively processed loci occur in subdivided populations.
Genome rearrangements occur in a variety of eukaryotic cells and serve as an important mechanism for generating genomic diversity. The unusual genome architecture of ciliates with separate germline and somatic nuclei in each cell, provides an ideal system to study further principles of genome evolution. Previous analyses revealed complex forms of chromosome rearrangements, including gene scrambling and alternative processing of germ line chromosomes. Here we describe more complex rearrangements between germ line and somatic chromosomes than previously seen in alternatively processed gene families. Drawing on the present and previous findings, we propose a model in which alternative processing of duplicated micronuclear regions represents an intermediate stage in the evolution of scrambled genes. Under this model, alternative processing may provide insights into a mechanism for speciation in ciliates. Our data on gene scrambling and alternative processing also enhance views on the dynamic nature of genomes across the eukaryotic tree of life.
染色体重排在各种真核生物生命周期中都会发生,包括在纤毛虫体细胞大核基因组的发育过程中。先前对叶咽纲纤毛虫斜管虫(Chilodonella uncinata)的研究表明,大核β-微管蛋白和蛋白激酶基因家族共享嵌套在不同区域内的交替加工的种系片段。为了进一步研究这种纤毛虫的基因组进化,我们从纤毛虫形态种斜管虫的两个隐性物种中鉴定了另外两个交替加工的基因家族:编码组氨酸酸性磷酸酶蛋白(Hap)和利什曼溶菌素家族蛋白(Lei)的基因家族。对大核Hap和Lei序列的分析表明,每个基因家族在大核中由三个成员组成,这些成员由嵌套在高度不同区域之间的相同区域标记。对小核Hap序列的研究揭示了一种复杂的模式,其中三个大核序列要么来自单个小核区域,要么来自这个共享区域与Hap的其他重复小核拷贝重组的组合。我们提出了一个模型,即基因重排通过基因复制,然后重复序列的部分和相互降解而进化。在这个模型中,交替加工代表了重排基因进化的一个中间步骤。最后,我们通过描述如果在细分种群中交替加工位点发生变化可能会发生什么,推测了基因组结构在纤毛虫物种形成中的可能作用。
染色体重排在各种真核细胞中都会发生,是产生基因组多样性的重要机制。纤毛虫每个细胞中具有独立的种系和体细胞核,其异常的基因组结构为进一步研究基因组进化原理提供了理想的系统。先前的分析揭示了染色体重排的复杂形式,包括基因重排和种系染色体的交替加工。在这里,我们描述了种系染色体和体染色体之间比先前在交替加工基因家族中看到的更复杂的重排。借鉴目前和先前的研究结果,我们提出了一个模型,其中重复小核区域的交替加工代表了重排基因进化的一个中间阶段。在这个模型下,交替加工可能为纤毛虫物种形成的机制提供见解。我们关于基因重排和交替加工的数据也增强了对整个真核生物生命树中基因组动态性质的认识。