Suppr超能文献

容积调强弧形治疗(VMAT)和立体定向体部放疗(SPORT)的监测单位独立计算。

Independent calculation of monitor units for VMAT and SPORT.

作者信息

Chen Xin, Bush Karl, Ding Aiping, Xing Lei

机构信息

Department of Radiation Oncology, Stanford University, Stanford, California 94305.

出版信息

Med Phys. 2015 Feb;42(2):918-24. doi: 10.1118/1.4906185.

Abstract

PURPOSE

Dose and monitor units (MUs) represent two important facets of a radiation therapy treatment. In current practice, verification of a treatment plan is commonly done in dose domain, in which a phantom measurement or forward dose calculation is performed to examine the dosimetric accuracy and the MU settings of a given treatment plan. While it is desirable to verify directly the MU settings, a computational framework for obtaining the MU values from a known dose distribution has yet to be developed. This work presents a strategy to calculate independently the MUs from a given dose distribution of volumetric modulated arc therapy (VMAT) and station parameter optimized radiation therapy (SPORT).

METHODS

The dose at a point can be expressed as a sum of contributions from all the station points (or control points). This relationship forms the basis of the proposed MU verification technique. To proceed, the authors first obtain the matrix elements which characterize the dosimetric contribution of the involved station points by computing the doses at a series of voxels, typically on the prescription surface of the VMAT/SPORT treatment plan, with unit MU setting for all the station points. An in-house Monte Carlo (MC) software is used for the dose matrix calculation. The MUs of the station points are then derived by minimizing the least-squares difference between doses computed by the treatment planning system (TPS) and that of the MC for the selected set of voxels on the prescription surface. The technique is applied to 16 clinical cases with a variety of energies, disease sites, and TPS dose calculation algorithms.

RESULTS

For all plans except the lung cases with large tissue density inhomogeneity, the independently computed MUs agree with that of TPS to within 2.7% for all the station points. In the dose domain, no significant difference between the MC and Eclipse Anisotropic Analytical Algorithm (AAA) dose distribution is found in terms of isodose contours, dose profiles, gamma index, and dose volume histogram (DVH) for these cases. For the lung cases, the MC-calculated MUs differ significantly from that of the treatment plan computed using AAA. However, the discrepancies are reduced to within 3% when the TPS dose calculation algorithm is switched to a transport equation-based technique (Acuros™). Comparison in the dose domain between the MC and Eclipse AAA/Acuros calculation yields conclusion consistent with the MU calculation.

CONCLUSIONS

A computational framework relating the MU and dose domains has been established. The framework does not only enable them to verify the MU values of the involved station points of a VMAT plan directly in the MU domain but also provide a much needed mechanism to adaptively modify the MU values of the station points in accordance to a specific change in the dose domain.

摘要

目的

剂量和监测单位(MU)代表放射治疗的两个重要方面。在当前实践中,治疗计划的验证通常在剂量域进行,其中进行体模测量或正向剂量计算以检查给定治疗计划的剂量准确性和MU设置。虽然直接验证MU设置是可取的,但尚未开发出从已知剂量分布获取MU值的计算框架。这项工作提出了一种从容积调强弧形治疗(VMAT)和静态参数优化放射治疗(SPORT)的给定剂量分布中独立计算MU的策略。

方法

某一点处的剂量可表示为所有静态点(或控制点)贡献的总和。这种关系构成了所提出的MU验证技术的基础。具体步骤如下,作者首先通过在一系列体素(通常在VMAT/SPORT治疗计划的处方表面)上计算剂量来获得表征相关静态点剂量贡献的矩阵元素,所有静态点的MU设置均为单位值。使用内部蒙特卡罗(MC)软件进行剂量矩阵计算。然后通过最小化治疗计划系统(TPS)计算的剂量与MC计算的所选处方表面体素集的剂量之间的最小二乘差异,得出静态点的MU值。该技术应用于16个具有各种能量、疾病部位和TPS剂量计算算法的临床病例。

结果

对于除具有大组织密度不均匀性的肺部病例外的所有计划,所有静态点的独立计算的MU与TPS的MU在2.7%以内一致。在剂量域中,对于这些病例,在等剂量线轮廓、剂量剖面、伽马指数和剂量体积直方图(DVH)方面,MC和Eclipse各向异性分析算法(AAA)的剂量分布没有显著差异。对于肺部病例,MC计算的MU与使用AAA计算的治疗计划的MU有显著差异。然而,当TPS剂量计算算法切换到基于传输方程的技术(Acuros™)时,差异减小到3%以内。MC与Eclipse AAA/Acuros计算在剂量域的比较得出与MU计算一致的结论。

结论

已建立了一个将MU和剂量域相关联的计算框架。该框架不仅使他们能够直接在MU域中验证VMAT计划相关静态点的MU值,还提供了一种急需的机制,以根据剂量域中的特定变化自适应地修改静态点的MU值。

相似文献

1
Independent calculation of monitor units for VMAT and SPORT.
Med Phys. 2015 Feb;42(2):918-24. doi: 10.1118/1.4906185.
2
Secondary monitor unit calculations for VMAT using parallelized Monte Carlo simulations.
J Appl Clin Med Phys. 2019 Jun;20(6):60-69. doi: 10.1002/acm2.12605. Epub 2019 May 24.
3
A Monte Carlo tool for evaluating VMAT and DIMRT treatment deliveries including planar detectors.
Phys Med Biol. 2013 Jun 7;58(11):3535-50. doi: 10.1088/0031-9155/58/11/3535. Epub 2013 May 2.
4
On the use of a convolution-superposition algorithm for plan checking in lung stereotactic body radiation therapy.
J Appl Clin Med Phys. 2016 Sep 8;17(5):99-110. doi: 10.1120/jacmp.v17i5.6186.
5
An in vivo dose verification method for SBRT-VMAT delivery using the EPID.
Med Phys. 2015 Dec;42(12):6955-63. doi: 10.1118/1.4935201.
6
Enhanced optimization of volumetric modulated arc therapy plans using Monte Carlo generated beamlets.
Med Phys. 2020 Dec;47(12):6053-6067. doi: 10.1002/mp.14486. Epub 2020 Oct 19.
7
External beam patient dose verification based on the integral quality monitor (IQM) output signals.
Biomed Phys Eng Express. 2020 Mar 25;6(3):035014. doi: 10.1088/2057-1976/ab5f55.
8
Dependence of volume dose indices on dose calculation algorithms for VMAT-SBRT plans for peripheral lung tumor.
Med Dosim. 2019;44(3):284-290. doi: 10.1016/j.meddos.2018.10.004. Epub 2018 Nov 16.
10
Monte Carlo dose verification for a single-isocenter VMAT plan in multiple brain metastases.
Med Dosim. 2019;44(4):e51-e58. doi: 10.1016/j.meddos.2019.01.001. Epub 2019 Feb 6.

引用本文的文献

1
Monitor unit verification for Varian TrueBeam VMAT plans using Monte Carlo calculations and phase space data.
J Appl Clin Med Phys. 2023 Oct;24(10):e14063. doi: 10.1002/acm2.14063. Epub 2023 Jul 19.
2
Secondary monitor unit calculations for VMAT using parallelized Monte Carlo simulations.
J Appl Clin Med Phys. 2019 Jun;20(6):60-69. doi: 10.1002/acm2.12605. Epub 2019 May 24.
4
Monte Carlo modeling of ultrasound probes for image guided radiotherapy.
Med Phys. 2015 Oct;42(10):5745-56. doi: 10.1118/1.4929978.

本文引用的文献

1
Nonisocentric treatment strategy for breast radiation therapy: a proof of concept study.
Int J Radiat Oncol Biol Phys. 2014 Mar 15;88(4):920-6. doi: 10.1016/j.ijrobp.2013.12.029.
2
A comparison of the gamma index analysis in various commercial IMRT/VMAT QA systems.
Radiother Oncol. 2013 Dec;109(3):370-6. doi: 10.1016/j.radonc.2013.08.048. Epub 2013 Oct 4.
5
Quality assurance of dynamic parameters in volumetric modulated arc therapy.
Br J Radiol. 2012 Jul;85(1015):1002-10. doi: 10.1259/bjr/19152959.
6
An end-to-end examination of geometric accuracy of IGRT using a new digital accelerator equipped with onboard imaging system.
Phys Med Biol. 2012 Feb 7;57(3):757-69. doi: 10.1088/0031-9155/57/3/757. Epub 2012 Jan 18.
7
Monte Carlo simulation of photon migration in a cloud computing environment with MapReduce.
J Biomed Opt. 2011 Dec;16(12):125003. doi: 10.1117/1.3656964.
8
9
Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure.
Phys Med Biol. 2011 Sep 7;56(17):N175-81. doi: 10.1088/0031-9155/56/17/N02. Epub 2011 Aug 12.
10
Dose verification for respiratory-gated volumetric modulated arc therapy.
Phys Med Biol. 2011 Aug 7;56(15):4827-38. doi: 10.1088/0031-9155/56/15/013. Epub 2011 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验