Division of Medical Physics, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, R3E 0V9, Canada.
Phys Med Biol. 2013 Jun 7;58(11):3535-50. doi: 10.1088/0031-9155/58/11/3535. Epub 2013 May 2.
The aim of this work is to describe and validate a new general research tool that performs Monte Carlo (MC) simulations for volumetric modulated arc therapy (VMAT) and dynamic intensity modulated radiation therapy (DIMRT), simultaneously tracking dose deposition in both the patient CT geometry and an arbitrary planar detector system. The tool is generalized to handle either entrance or exit detectors and provides the simulated dose for the individual control-points of the time-dependent VMAT and DIMRT deliveries. The MC simulation tool was developed with the EGSnrc radiation transport. For the individual control point simulation, we rotate the patient/phantom volume only (i.e. independent of the gantry and planar detector geometries) using the gantry angle in the treatment planning system (TPS) DICOM RP file such that each control point has its own unique phantom file. After MC simulation, we obtained the total dose to the phantom by summing dose contributions for all control points. Scored dose to the sensitive layer of the planar detector is available for each control point. To validate the tool, three clinical treatment plans were used including VMAT plans for a prostate case and a head-and-neck case, and a DIMRT plan for a head-and-neck case. An electronic portal imaging device operated in 'movie' mode was used with the VMAT plans delivered to cylindrical and anthropomorphic phantoms to validate the code using an exit detector. The DIMRT plan was delivered to a novel transmission detector, to validate the code using an entrance detector. The total MC 3D absolute doses in patient/phantom were compared with the TPS doses, while 2D MC doses were compared with planar detector doses for all individual control points, using the gamma evaluation test with 3%/3 mm criteria. The MC 3D absolute doses demonstrated excellent agreement with the TPS doses for all the tested plans, with about 95% of voxels having γ <1 for the plans. For planar dosimetry image comparisons, we defined an acceptable pass rate of >90% of percentage pixels with γ <1. We found that over 90% of control points in the plans passed this criterion. In general, our results indicate that the simulation tool is suitable for accurately calculating both patient/phantom doses and planar doses for VMAT dose delivery. The tool will be valuable to check performance and advance the development of in vivo planar detectors for use in measurement-based VMAT dose verification. In addition, the tool can be useful as an independent research tool for VMAT commissioning of the TPS and delivery system.
这项工作的目的是描述和验证一种新的通用研究工具,该工具可对容积调强弧形治疗(VMAT)和动态强度调制放射治疗(DIMRT)进行蒙特卡罗(MC)模拟,同时跟踪患者 CT 几何形状和任意平面探测器系统中的剂量沉积。该工具被推广用于处理入口或出口探测器,并为时间相关的 VMAT 和 DIMRT 输送的各个控制点提供模拟剂量。MC 模拟工具是使用 EGSnrc 辐射传输开发的。对于各个控制点的模拟,我们仅旋转患者/体模体积(即与机架和平面探测器几何形状无关),使用治疗计划系统(TPS)DICOM RP 文件中的机架角度,使得每个控制点都有自己独特的体模文件。MC 模拟后,我们通过对所有控制点的剂量贡献求和来获得体模的总剂量。对于每个控制点,都可以获得平面探测器敏感层的评分剂量。为了验证该工具,我们使用了三个临床治疗计划,包括前列腺病例和头颈部病例的 VMAT 计划,以及头颈部病例的 DIMRT 计划。使用电子门户成像设备以“电影”模式运行,并将 VMAT 计划输送到圆柱形和人体模型体模,使用出口探测器验证代码。将 DIMRT 计划输送到新型传输探测器,使用入口探测器验证代码。使用 3%/3 毫米标准的伽马评估测试,将患者/体模中的 MC 3D 绝对剂量与 TPS 剂量进行比较,同时将所有单个控制点的 MC 2D 剂量与平面探测器剂量进行比较。对于所有测试计划,MC 3D 绝对剂量与 TPS 剂量吻合良好,约 95%的体素的 γ 值<1。对于平面剂量成像比较,我们定义了一个可接受的通过率>90%的γ值<1的像素百分比。我们发现,计划中超过 90%的控制点都通过了这个标准。总的来说,我们的结果表明,该模拟工具非常适合准确计算 VMAT 剂量输送的患者/体模剂量和平面剂量。该工具将有助于检查性能并推进用于基于测量的 VMAT 剂量验证的体内平面探测器的发展。此外,该工具还可作为 TPS 和输送系统的 VMAT 调试的独立研究工具。