Suppr超能文献

统计背景塑造人类听觉皮层中特定刺激的适应性。

Statistical context shapes stimulus-specific adaptation in human auditory cortex.

作者信息

Herrmann Björn, Henry Molly J, Fromboluti Elisa Kim, McAuley J Devin, Obleser Jonas

机构信息

Max Planck Research Group "Auditory Cognition," Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and

Max Planck Research Group "Auditory Cognition," Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and.

出版信息

J Neurophysiol. 2015 Apr 1;113(7):2582-91. doi: 10.1152/jn.00634.2014. Epub 2015 Feb 4.

Abstract

Stimulus-specific adaptation is the phenomenon whereby neural response magnitude decreases with repeated stimulation. Inconsistencies between recent nonhuman animal recordings and computational modeling suggest dynamic influences on stimulus-specific adaptation. The present human electroencephalography (EEG) study investigates the potential role of statistical context in dynamically modulating stimulus-specific adaptation by examining the auditory cortex-generated N1 and P2 components. As in previous studies of stimulus-specific adaptation, listeners were presented with oddball sequences in which the presentation of a repeated tone was infrequently interrupted by rare spectral changes taking on three different magnitudes. Critically, the statistical context varied with respect to the probability of small versus large spectral changes within oddball sequences (half of the time a small change was most probable; in the other half a large change was most probable). We observed larger N1 and P2 amplitudes (i.e., release from adaptation) for all spectral changes in the small-change compared with the large-change statistical context. The increase in response magnitude also held for responses to tones presented with high probability, indicating that statistical adaptation can overrule stimulus probability per se in its influence on neural responses. Computational modeling showed that the degree of coadaptation in auditory cortex changed depending on the statistical context, which in turn affected stimulus-specific adaptation. Thus the present data demonstrate that stimulus-specific adaptation in human auditory cortex critically depends on statistical context. Finally, the present results challenge the implicit assumption of stationarity of neural response magnitudes that governs the practice of isolating established deviant-detection responses such as the mismatch negativity.

摘要

刺激特异性适应是指神经反应幅度随重复刺激而降低的现象。近期非人类动物记录与计算模型之间的不一致表明,对刺激特异性适应存在动态影响。本项人类脑电图(EEG)研究通过检测听觉皮层产生的N1和P2成分,探讨了统计背景在动态调节刺激特异性适应中的潜在作用。与之前关于刺激特异性适应的研究一样,让受试者听异常刺激序列,其中重复音调的呈现偶尔会被罕见的频谱变化打断,这些变化有三种不同幅度。关键的是,在异常刺激序列中,小幅度与大幅度频谱变化的概率方面,统计背景有所不同(一半时间小幅度变化最有可能;另一半时间大幅度变化最有可能)。我们观察到,与大幅度变化的统计背景相比,小幅度变化的所有频谱变化的N1和P2波幅更大(即从适应中释放)。对高概率呈现音调的反应,反应幅度的增加同样存在,这表明统计适应在对神经反应的影响上可以推翻刺激概率本身。计算模型表明,听觉皮层中的共同适应程度根据统计背景而变化,这反过来又影响了刺激特异性适应。因此,目前的数据表明,人类听觉皮层中的刺激特异性适应关键取决于统计背景。最后,目前的结果挑战了神经反应幅度平稳性的隐含假设,这种假设支配着分离既定的偏差检测反应(如失配负波)的做法。

相似文献

1
Statistical context shapes stimulus-specific adaptation in human auditory cortex.
J Neurophysiol. 2015 Apr 1;113(7):2582-91. doi: 10.1152/jn.00634.2014. Epub 2015 Feb 4.
2
Sensitivity of rat inferior colliculus neurons to frequency distributions.
J Neurophysiol. 2015 Nov;114(5):2941-54. doi: 10.1152/jn.00555.2015. Epub 2015 Sep 9.
3
Dynamic range adaptation to spectral stimulus statistics in human auditory cortex.
J Neurosci. 2014 Jan 1;34(1):327-31. doi: 10.1523/JNEUROSCI.3974-13.2014.
4
Specific Early and Late Oddball-Evoked Responses in Excitatory and Inhibitory Neurons of Mouse Auditory Cortex.
J Neurosci. 2015 Sep 9;35(36):12560-73. doi: 10.1523/JNEUROSCI.2240-15.2015.
5
Aging Affects Adaptation to Sound-Level Statistics in Human Auditory Cortex.
J Neurosci. 2018 Feb 21;38(8):1989-1999. doi: 10.1523/JNEUROSCI.1489-17.2018. Epub 2018 Jan 22.
7
Frequency-specific adaptation in human auditory cortex depends on the spectral variance in the acoustic stimulation.
J Neurophysiol. 2013 Apr;109(8):2086-96. doi: 10.1152/jn.00907.2012. Epub 2013 Jan 23.
8
Functional dissociation between regularity encoding and deviance detection along the auditory hierarchy.
Eur J Neurosci. 2016 Feb;43(4):529-35. doi: 10.1111/ejn.13138. Epub 2015 Dec 31.
10
The posterior auditory field is the chief generator of prediction error signals in the auditory cortex.
Neuroimage. 2021 Nov 15;242:118446. doi: 10.1016/j.neuroimage.2021.118446. Epub 2021 Aug 2.

引用本文的文献

2
Bridging Neuroscience and Robotics: Spiking Neural Networks in Action.
Sensors (Basel). 2023 Nov 1;23(21):8880. doi: 10.3390/s23218880.
3
Corticofugal regulation of predictive coding.
Elife. 2022 Mar 15;11:e73289. doi: 10.7554/eLife.73289.
4
Electrophysiological correlates of perceptual prediction error are attenuated in dyslexia.
Neuropsychologia. 2022 Jan 28;165:108091. doi: 10.1016/j.neuropsychologia.2021.108091. Epub 2021 Nov 19.
5
Sound level context modulates neural activity in the human brainstem.
Sci Rep. 2021 Nov 19;11(1):22581. doi: 10.1038/s41598-021-02055-y.
6
Talker discontinuity disrupts attention to speech: Evidence from EEG and pupillometry.
Brain Lang. 2021 Oct;221:104996. doi: 10.1016/j.bandl.2021.104996. Epub 2021 Aug 3.
7
Computational framework for investigating predictive processing in auditory perception.
J Neurosci Methods. 2021 Aug 1;360:109177. doi: 10.1016/j.jneumeth.2021.109177. Epub 2021 Apr 9.
8
[Effects of auditory response patterns on stimulus-specific adaptation of inferior colliculus neurons in awake mice].
Nan Fang Yi Ke Da Xue Xue Bao. 2018 Jan 30;38(1):69-74. doi: 10.3969/j.issn.1673-4254.2018.01.11.
10
A Model for Statistical Regularity Extraction from Dynamic Sounds.
Acta Acust United Acust. 2019 Jan-Feb;105(1):1-4. doi: 10.3813/AAA.919279. Epub 2018 Dec 7.

本文引用的文献

1
Entrained neural oscillations in multiple frequency bands comodulate behavior.
Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14935-40. doi: 10.1073/pnas.1408741111. Epub 2014 Sep 29.
2
Hearing in noisy environments: noise invariance and contrast gain control.
J Physiol. 2014 Aug 15;592(16):3371-81. doi: 10.1113/jphysiol.2014.274886. Epub 2014 Jun 6.
3
Intracellular correlates of stimulus-specific adaptation.
J Neurosci. 2014 Feb 26;34(9):3303-19. doi: 10.1523/JNEUROSCI.2166-13.2014.
4
Stimulus-specific adaptation and deviance detection in the auditory system: experiments and models.
Biol Cybern. 2014 Oct;108(5):655-63. doi: 10.1007/s00422-014-0585-7. Epub 2014 Jan 30.
5
The auditory novelty system: an attempt to integrate human and animal research.
Psychophysiology. 2014 Feb;51(2):111-23. doi: 10.1111/psyp.12156. Epub 2013 Oct 22.
6
Dynamic range adaptation to spectral stimulus statistics in human auditory cortex.
J Neurosci. 2014 Jan 1;34(1):327-31. doi: 10.1523/JNEUROSCI.3974-13.2014.
7
Processing of complex distracting sounds in school-aged children and adults: evidence from EEG and MEG data.
Front Psychol. 2013 Oct 21;4:717. doi: 10.3389/fpsyg.2013.00717. eCollection 2013.
9
10
The Human Auditory Sensory Memory Trace Persists about 10 sec: Neuromagnetic Evidence.
J Cogn Neurosci. 1993 Summer;5(3):363-70. doi: 10.1162/jocn.1993.5.3.363.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验