Suppr超能文献

多重耐药铜绿假单胞菌临床分离株 PA7 中介导外排的氟喹诺酮耐药性:新型 MexS 变体的鉴定参与上调 MexEF-oprN 多药外排操纵子。

Efflux-mediated fluoroquinolone resistance in the multidrug-resistant Pseudomonas aeruginosa clinical isolate PA7: identification of a novel MexS variant involved in upregulation of the mexEF-oprN multidrug efflux operon.

机构信息

Department of Microbiology, School of Pharmacy, Aichi Gakuin University Nagoya, Japan.

出版信息

Front Microbiol. 2015 Jan 21;6:8. doi: 10.3389/fmicb.2015.00008. eCollection 2015.

Abstract

The emergence of multidrug-resistant Pseudomonas aeruginosa has become a serious problem in medical settings. P. aeruginosa clinical isolate PA7 is resistant to fluoroquinolones, aminoglycosides, and most β-lactams but not imipenem. In this study, enhanced efflux-mediated fluoroquinolone resistance of PA7 was shown to reflect increased expression of two resistance nodulation cell division (RND) -type multidrug efflux operons, mexEF-oprN and mexXY-oprA. Such a clinical isolate has rarely been reported because MexEF-OprN-overproducing mutants often increase susceptibility to aminoglycosides apparently owing to impairment of the MexXY system. A mutant of PA7 lacking three RND-type multidrug efflux operons (mexAB-oprM, mexEF-oprN, and mexXY-oprA) was susceptible to all anti-pseudomonas agents we tested, supporting an idea that these RND-type multidrug efflux transporters are molecular targets to overcome multidrug resistance in P. aeruginosa. mexEF-oprN-upregulation in P. aeruginosa PA7 was shown due to a MexS variant harboring the Valine-155 amino acid residue. This is the first genetic evidence shown that a MexS variant causes mexEF-oprN-upregulation in P. aeruginosa clinical isolates.

摘要

铜绿假单胞菌中出现了多重耐药性,这在医疗环境中已成为一个严重的问题。临床分离株 PA7 对氟喹诺酮类、氨基糖苷类和大多数β-内酰胺类药物耐药,但对亚胺培南敏感。在这项研究中,PA7 的增强型外排介导的氟喹诺酮耐药性表明其两种耐药结节分裂(RND)型多药外排操纵子 mexEF-oprN 和 mexXY-oprA 的表达增加。这种临床分离株很少被报道,因为 MexEF-OprN 过度表达的突变体通常对氨基糖苷类药物的敏感性增加,显然是由于 MexXY 系统受损。缺乏三个 RND 型多药外排操纵子(mexAB-oprM、mexEF-oprN 和 mexXY-oprA)的 PA7 突变体对我们测试的所有抗假单胞菌药物均敏感,这支持了这样一种观点,即这些 RND 型多药外排转运蛋白是克服铜绿假单胞菌多药耐药性的分子靶标。PA7 中的 MexEF-oprN 上调是由于含有缬氨酸 155 个氨基酸残基的 MexS 变体。这是第一个遗传证据表明 MexS 变体导致铜绿假单胞菌临床分离株中 MexEF-oprN 上调。

相似文献

2
Assignment of the substrate-selective subunits of the MexEF-OprN multidrug efflux pump of Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 2000 Mar;44(3):658-64. doi: 10.1128/AAC.44.3.658-664.2000.
5
Multidrug resistance associated with mexXY expression in clinical isolates of Pseudomonas aeruginosa from a Texas hospital.
Diagn Microbiol Infect Dis. 2004 Sep;50(1):43-50. doi: 10.1016/j.diagmicrobio.2004.05.004.
6
Primary mechanisms mediating aminoglycoside resistance in the multidrug-resistant Pseudomonas aeruginosa clinical isolate PA7.
Microbiology (Reading). 2012 Apr;158(Pt 4):1071-1083. doi: 10.1099/mic.0.054320-0. Epub 2012 Jan 27.
7
Role of the MexEF-OprN efflux system in low-level resistance of Pseudomonas aeruginosa to ciprofloxacin.
Antimicrob Agents Chemother. 2011 Dec;55(12):5676-84. doi: 10.1128/AAC.00101-11. Epub 2011 Sep 12.
9
Interplay between MexAB-OprM and MexEF-OprN in clinical isolates of Pseudomonas aeruginosa.
Sci Rep. 2018 Nov 7;8(1):16463. doi: 10.1038/s41598-018-34694-z.
10
mvaT mutation modifies the expression of the Pseudomonas aeruginosa multidrug efflux operon mexEF-oprN.
FEMS Microbiol Lett. 2006 Feb;255(2):247-54. doi: 10.1111/j.1574-6968.2005.00075.x.

引用本文的文献

1
Comparative genomics of .
J Bacteriol. 2025 Aug 21;207(8):e0014925. doi: 10.1128/jb.00149-25. Epub 2025 Jul 25.
2
Differences in antimicrobial resistance between exoU and exoS isolates of Pseudomonas aeruginosa.
Eur J Clin Microbiol Infect Dis. 2025 Apr 22. doi: 10.1007/s10096-025-05132-6.
3
Role of the two-component system AmgRS in early resistance of to cinnamaldehyde.
Microbiol Spectr. 2025 Jan 7;13(1):e0169924. doi: 10.1128/spectrum.01699-24. Epub 2024 Dec 10.
4
Antibiotic influx and efflux in Pseudomonas aeruginosa: Regulation and therapeutic implications.
Microb Biotechnol. 2024 May;17(5):e14487. doi: 10.1111/1751-7915.14487.
5
The Art of War with : Targeting Mex Efflux Pumps Directly to Strategically Enhance Antipseudomonal Drug Efficacy.
Antibiotics (Basel). 2023 Aug 9;12(8):1304. doi: 10.3390/antibiotics12081304.
6
Antimicrobial Resistance: Two-Component Regulatory Systems and Multidrug Efflux Pumps.
Antibiotics (Basel). 2023 May 26;12(6):965. doi: 10.3390/antibiotics12060965.
8
The resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing the efficacy of this antibiotic.
Front Public Health. 2022 Dec 21;10:1025633. doi: 10.3389/fpubh.2022.1025633. eCollection 2022.
9
Role of Efflux Pumps on Antimicrobial Resistance in .
Int J Mol Sci. 2022 Dec 13;23(24):15779. doi: 10.3390/ijms232415779.
10
Common recognition topology of mex transporters of revealed by molecular modelling.
Front Pharmacol. 2022 Nov 11;13:1021916. doi: 10.3389/fphar.2022.1021916. eCollection 2022.

本文引用的文献

2
Update on the antibiotic resistance crisis.
Curr Opin Pharmacol. 2014 Oct;18:56-60. doi: 10.1016/j.coph.2014.09.006. Epub 2014 Sep 23.
3
Responses of Pseudomonas aeruginosa to antimicrobials.
Front Microbiol. 2014 Jan 8;4:422. doi: 10.3389/fmicb.2013.00422.
4
Carbapenem-resistance mechanisms of multidrug-resistant Pseudomonas aeruginosa.
J Med Microbiol. 2013 Sep;62(Pt 9):1317-1325. doi: 10.1099/jmm.0.058354-0. Epub 2013 May 30.
5
Pseudomonas aeruginosa: new insights into pathogenesis and host defenses.
Pathog Dis. 2013 Apr;67(3):159-73. doi: 10.1111/2049-632X.12033. Epub 2013 Mar 15.
6
BLAST: a more efficient report with usability improvements.
Nucleic Acids Res. 2013 Jul;41(Web Server issue):W29-33. doi: 10.1093/nar/gkt282. Epub 2013 Apr 22.
7
Molecular epidemiology and multidrug resistance mechanisms of Pseudomonas aeruginosa isolates from Bulgarian hospitals.
Microb Drug Resist. 2013 Oct;19(5):355-61. doi: 10.1089/mdr.2013.0004. Epub 2013 Apr 21.
8
Complexity of resistance mechanisms to imipenem in intensive care unit strains of Pseudomonas aeruginosa.
J Antimicrob Chemother. 2013 Aug;68(8):1772-80. doi: 10.1093/jac/dkt098. Epub 2013 Apr 14.
10
Quantitative contributions of target alteration and decreased drug accumulation to Pseudomonas aeruginosa fluoroquinolone resistance.
Antimicrob Agents Chemother. 2013 Mar;57(3):1361-8. doi: 10.1128/AAC.01581-12. Epub 2012 Dec 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验