Wolff Valérie, Schlagowski Anna-Isabel, Rouyer Olivier, Charles Anne-Laure, Singh François, Auger Cyril, Schini-Kerth Valérie, Marescaux Christian, Raul Jean-Sébastien, Zoll Joffrey, Geny Bernard
EA 3072, Fédération de Médecine Translationnelle de Strasbourg, Institut de Physiologie, Université de Strasbourg, 67000 Strasbourg, France ; Unité Neuro-Vasculaire, Service de Neurologie, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France ; CNRS, ICube UMR-7357, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, 67000 Strasbourg, France.
EA 3072, Fédération de Médecine Translationnelle de Strasbourg, Institut de Physiologie, Université de Strasbourg, 67000 Strasbourg, France ; Service de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique Hôpitaux Universitaires, NHC, CHRU de Strasbourg, 67000 Strasbourg Cedex, France.
Biomed Res Int. 2015;2015:323706. doi: 10.1155/2015/323706. Epub 2015 Jan 14.
Cannabis has potential therapeutic use but tetrahydrocannabinol (THC), its main psychoactive component, appears as a risk factor for ischemic stroke in young adults. We therefore evaluate the effects of THC on brain mitochondrial function and oxidative stress, key factors involved in stroke. Maximal oxidative capacities V max (complexes I, III, and IV activities), V succ (complexes II, III, and IV activities), V tmpd (complex IV activity), together with mitochondrial coupling (V max/V 0), were determined in control conditions and after exposure to THC in isolated mitochondria extracted from rat brain, using differential centrifugations. Oxidative stress was also assessed through hydrogen peroxide (H2O2) production, measured with Amplex Red. THC significantly decreased V max (-71%; P < 0.0001), V succ (-65%; P < 0.0001), and V tmpd (-3.5%; P < 0.001). Mitochondrial coupling (V max/V 0) was also significantly decreased after THC exposure (1.8±0.2 versus 6.3±0.7; P < 0.001). Furthermore, THC significantly enhanced H2O2 production by cerebral mitochondria (+171%; P < 0.05) and mitochondrial free radical leak was increased from 0.01±0.01 to 0.10±0.01% (P < 0.001). Thus, THC increases oxidative stress and induces cerebral mitochondrial dysfunction. This mechanism may be involved in young cannabis users who develop ischemic stroke since THC might increase patient's vulnerability to stroke.
大麻具有潜在的治疗用途,但其主要精神活性成分四氢大麻酚(THC)似乎是年轻成年人缺血性中风的一个风险因素。因此,我们评估了THC对脑线粒体功能和氧化应激的影响,这是中风涉及的关键因素。使用差速离心法,在从大鼠脑提取的分离线粒体的对照条件下以及暴露于THC后,测定了最大氧化能力V max(复合物I、III和IV活性)、V succ(复合物II、III和IV活性)、V tmpd(复合物IV活性)以及线粒体偶联(V max/V 0)。还通过使用Amplex Red测量过氧化氢(H2O2)生成来评估氧化应激。THC显著降低了V max(-71%;P < 0.0001)、V succ(-65%;P < 0.0001)和V tmpd(-3.5%;P < 0.001)。THC暴露后线粒体偶联(V max/V 0)也显著降低(1.8±0.2对6.3±0.7;P < 0.001)。此外,THC显著增强了脑线粒体的H2O2生成(+171%;P < 0.05),线粒体自由基泄漏从0.01±0.01增加到0.10±0.01%(P < 0.001)。因此,THC增加氧化应激并诱导脑线粒体功能障碍。这种机制可能与患缺血性中风的年轻大麻使用者有关,因为THC可能会增加患者中风的易感性。