Suppr超能文献

利用肽库方法发现BRCA1 C末端结构域的拟磷酸化抑制剂。

Peptide library approach to uncover phosphomimetic inhibitors of the BRCA1 C-terminal domain.

作者信息

White E Railey, Sun Luxin, Ma Zhong, Beckta Jason M, Danzig Brittany A, Hacker David E, Huie Melissa, Williams David C, Edwards Ross A, Valerie Kristoffer, Glover J N Mark, Hartman Matthew C T

机构信息

†Department of Chemistry, Virginia Commonwealth University (VCU), 1001 West Main Street, P.O. Box 842006, Richmond, Virginia 23284, United States.

⊥Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.

出版信息

ACS Chem Biol. 2015 May 15;10(5):1198-208. doi: 10.1021/cb500757u. Epub 2015 Feb 5.

Abstract

Many intracellular protein-protein interactions are mediated by the phosphorylation of serine, and phosphoserine-containing peptides can inhibit these interactions. However, hydrolysis of the phosphate by phosphatases, and the poor cell permeability associated with phosphorylated peptides has limited their utility in cellular and in vivo contexts. Compounding the problem, strategies to replace phosphoserine in peptide inhibitors with easily accessible mimetics (such as Glu or Asp) routinely fail. Here, we present an in vitro selection strategy for replacement of phosphoserine. Using mRNA display, we created a 10 trillion member structurally diverse unnatural peptide library. From this library, we found a peptide that specifically binds to the C-terminal domain (BRCT)2 of breast cancer associated protein 1 (BRCA1) with an affinity comparable to phosphorylated peptides. A crystal structure of the peptide bound reveals that the pSer-x-x-Phe motif normally found in BRCA1 (BRCT)2 binding partners is replaced by a Glu-x-x-4-fluoroPhe and that the peptide picks up additional contacts on the protein surface not observed in cognate phosphopeptide binding. Expression of the peptide in human cells led to defects in DNA repair by homologous recombination, a process BRCA1 is known to coordinate. Overall, this work validates a new in vitro selection approach for the development of inhibitors of protein-protein interactions mediated by serine phosphorylation.

摘要

许多细胞内的蛋白质-蛋白质相互作用是由丝氨酸磷酸化介导的,含磷酸丝氨酸的肽可以抑制这些相互作用。然而,磷酸酶对磷酸基团的水解作用以及磷酸化肽较差的细胞通透性限制了它们在细胞和体内环境中的应用。更糟糕的是,用易于获得的模拟物(如谷氨酸或天冬氨酸)替代肽抑制剂中磷酸丝氨酸的策略通常会失败。在此,我们提出了一种用于替代磷酸丝氨酸的体外筛选策略。利用mRNA展示技术,我们构建了一个包含10万亿个成员的结构多样的非天然肽库。从这个库中,我们发现了一种肽,它能特异性结合乳腺癌相关蛋白1(BRCA1)的C端结构域(BRCT)2,亲和力与磷酸化肽相当。结合该肽的晶体结构显示,BRCA1(BRCT)2结合伴侣中常见的pSer-x-x-Phe基序被Glu-x-x-4-氟苯丙氨酸取代,并且该肽在蛋白质表面获得了在同源磷酸肽结合中未观察到的额外接触。该肽在人类细胞中的表达导致同源重组DNA修复缺陷,而BRCA1已知可协调这一过程。总体而言,这项工作验证了一种新的体外筛选方法可用于开发由丝氨酸磷酸化介导的蛋白质-蛋白质相互作用抑制剂。

相似文献

1
Peptide library approach to uncover phosphomimetic inhibitors of the BRCA1 C-terminal domain.
ACS Chem Biol. 2015 May 15;10(5):1198-208. doi: 10.1021/cb500757u. Epub 2015 Feb 5.
2
Structural basis of phosphopeptide recognition by the BRCT domain of BRCA1.
Nat Struct Mol Biol. 2004 Jun;11(6):519-25. doi: 10.1038/nsmb776. Epub 2004 May 9.
3
Structure of the BRCT repeats of BRCA1 bound to a BACH1 phosphopeptide: implications for signaling.
Mol Cell. 2004 May 7;14(3):405-12. doi: 10.1016/s1097-2765(04)00238-2.
4
Structural basis for the BRCA1 BRCT interaction with the proteins ATRIP and BAAT1.
Biochemistry. 2013 Oct 29;52(43):7618-27. doi: 10.1021/bi400714v. Epub 2013 Oct 16.
5
Phosphopeptide binding specificities of BRCA1 COOH-terminal (BRCT) domains.
J Biol Chem. 2003 Dec 26;278(52):52914-8. doi: 10.1074/jbc.C300407200. Epub 2003 Oct 24.
6
The BRCT domain is a phospho-protein binding domain.
Science. 2003 Oct 24;302(5645):639-42. doi: 10.1126/science.1088753.
7
Structure of BRCA1-BRCT/Abraxas Complex Reveals Phosphorylation-Dependent BRCT Dimerization at DNA Damage Sites.
Mol Cell. 2016 Feb 4;61(3):434-448. doi: 10.1016/j.molcel.2015.12.017. Epub 2016 Jan 14.
8
Comparison of the structures and peptide binding specificities of the BRCT domains of MDC1 and BRCA1.
Structure. 2010 Feb 10;18(2):167-76. doi: 10.1016/j.str.2009.12.008.
9
BRCT repeats as phosphopeptide-binding modules involved in protein targeting.
Science. 2003 Oct 24;302(5645):636-9. doi: 10.1126/science.1088877.
10
Structure-Guided Synthesis and Evaluation of Small-Molecule Inhibitors Targeting Protein-Protein Interactions of BRCA1 tBRCT Domain.
ChemMedChem. 2019 Sep 18;14(18):1620-1632. doi: 10.1002/cmdc.201900300. Epub 2019 Sep 9.

引用本文的文献

1
New insights into protein-protein interaction modulators in drug discovery and therapeutic advance.
Signal Transduct Target Ther. 2024 Dec 6;9(1):341. doi: 10.1038/s41392-024-02036-3.
2
Using AI-predicted protein structures as a reference to predict loss-of-function activity in tumor suppressor breast cancer genes.
Comput Struct Biotechnol J. 2024 Oct 5;23:3472-3480. doi: 10.1016/j.csbj.2024.10.008. eCollection 2024 Dec.
3
Reaching New Heights in Genetic Code Manipulation with High Throughput Screening.
Chem Rev. 2024 Nov 13;124(21):12145-12175. doi: 10.1021/acs.chemrev.4c00329. Epub 2024 Oct 17.
4
Peptide-Based Agents for Cancer Treatment: Current Applications and Future Directions.
Int J Mol Sci. 2023 Aug 18;24(16):12931. doi: 10.3390/ijms241612931.
5
Development of a Cyclic, Cell Penetrating Peptide Compatible with In Vitro Selection Strategies.
ACS Chem Biol. 2023 Apr 21;18(4):746-755. doi: 10.1021/acschembio.2c00680. Epub 2023 Mar 15.
6
Regulation of DNA damage response by trimeric G-proteins.
iScience. 2023 Jan 13;26(2):105973. doi: 10.1016/j.isci.2023.105973. eCollection 2023 Feb 17.
7
Anti-cancer peptide-based therapeutic strategies in solid tumors.
Cell Mol Biol Lett. 2022 Apr 9;27(1):33. doi: 10.1186/s11658-022-00332-w.
9
10
Non-canonical Amino Acid Substrates of E. coli Aminoacyl-tRNA Synthetases.
Chembiochem. 2022 Jan 5;23(1):e202100299. doi: 10.1002/cbic.202100299. Epub 2021 Sep 22.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Discovery of cell-permeable inhibitors that target the BRCT domain of BRCA1 protein by using a small-molecule microarray.
Angew Chem Int Ed Engl. 2014 Aug 4;53(32):8421-6. doi: 10.1002/anie.201405169. Epub 2014 Jun 24.
3
Selection-based discovery of druglike macrocyclic peptides.
Annu Rev Biochem. 2014;83:727-52. doi: 10.1146/annurev-biochem-060713-035456. Epub 2014 Feb 21.
4
Mechanisms of resistance to therapies targeting BRCA-mutant cancers.
Nat Med. 2013 Nov;19(11):1381-8. doi: 10.1038/nm.3369. Epub 2013 Oct 7.
5
mRNA display: from basic principles to macrocycle drug discovery.
Drug Discov Today. 2014 Apr;19(4):388-99. doi: 10.1016/j.drudis.2013.10.011. Epub 2013 Oct 22.
6
Development of luminescent coelenterazine derivatives activatable by β-galactosidase for monitoring dual gene expression.
Chemistry. 2013 Oct 25;19(44):14970-6. doi: 10.1002/chem.201302002. Epub 2013 Sep 17.
7
Structural basis for the BRCA1 BRCT interaction with the proteins ATRIP and BAAT1.
Biochemistry. 2013 Oct 29;52(43):7618-27. doi: 10.1021/bi400714v. Epub 2013 Oct 16.
8
Structural mechanisms underlying signaling in the cellular response to DNA double strand breaks.
Mutat Res. 2013 Oct;750(1-2):15-22. doi: 10.1016/j.mrfmmm.2013.07.004. Epub 2013 Jul 27.
9
Differential chemotherapeutic sensitivity for breast tumors with "BRCAness": a review.
Oncologist. 2013;18(8):909-16. doi: 10.1634/theoncologist.2013-0039. Epub 2013 Jul 23.
10
Replacing amino acids in translation: expanding chemical diversity with non-natural variants.
Methods. 2013 Mar 15;60(1):70-4. doi: 10.1016/j.ymeth.2012.03.015. Epub 2012 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验