Suppr超能文献

玻璃体内注射人NgR-Fc诱饵蛋白可使视神经挤压伤后轴突再生,并在青光眼模型中保护神经节细胞。

Intravitreal delivery of human NgR-Fc decoy protein regenerates axons after optic nerve crush and protects ganglion cells in glaucoma models.

作者信息

Wang Xingxing, Lin Jun, Arzeno Alexander, Choi Jin Young, Boccio Juliann, Frieden Eric, Bhargava Ajay, Maynard George, Tsai James C, Strittmatter Stephen M

机构信息

Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, Connecticut, United States Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, United States.

Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut, United States.

出版信息

Invest Ophthalmol Vis Sci. 2015 Feb 5;56(2):1357-66. doi: 10.1167/iovs.14-15472.

Abstract

PURPOSE

Glaucoma is a major cause of vision loss due to retinal ganglion cell (RGC) degeneration. Therapeutic intervention controls increased IOP, but neuroprotection is unavailable. NogoReceptor1 (NgR1) limits adult central nervous system (CNS) axonal sprouting and regeneration. We examined NgR1 blocking decoy as a potential therapy by defining the pharmacokinetics of intravitreal NgR(310)-Fc, its promotion of RGC axonal regeneration following nerve crush, and its neuroprotective effect in a microbead glaucoma model.

METHODS

Human NgR1(310)-Fc was administered intravitreally, and levels were monitored in rat vitreal humor and retina. Axonal regeneration after optic nerve crush was assessed by cholera toxin β anterograde labeling. In a microbead model of glaucoma with increased IOP, the number of surviving and actively transporting RGCs was determined after 4 weeks by retrograde tracing with Fluro-Gold (FG) from the superior colliculus.

RESULTS

After intravitreal bolus administration, the terminal half-life of NgR1(310)-Fc between 1 and 7 days was approximately 24 hours. Injection of 5 μg protein once per week after optic nerve crush injury significantly increased RGCs with regenerating axons. Microbeads delivered to the anterior chamber increased pressure, and caused 15% reduction in FG-labeled RGCs of control rats, with a 40% reduction in large diameter RGCs. Intravitreal treatment with NgR1(310)-Fc did not reduce IOP, but maintained large diameter RGC density at control levels.

CONCLUSIONS

Human NgR1(310)-Fc has favorable pharmacokinetics in the vitreal space and rescues large diameter RGC counts from increased IOP. Thus, the NgR1 blocking decoy protein may have efficacy as a disease-modifying therapy for glaucoma.

摘要

目的

青光眼是视网膜神经节细胞(RGC)退化导致视力丧失的主要原因。治疗干预可控制眼压升高,但神经保护治疗尚不可用。Nogo受体1(NgR1)限制成年中枢神经系统(CNS)轴突的发芽和再生。我们通过确定玻璃体内NgR(310)-Fc的药代动力学、其在神经挤压后对RGC轴突再生的促进作用以及在微珠青光眼模型中的神经保护作用,研究了NgR1阻断诱饵作为一种潜在治疗方法的效果。

方法

将人NgR1(310)-Fc玻璃体内给药,并在大鼠玻璃体液和视网膜中监测其水平。通过霍乱毒素β顺行标记评估视神经挤压后的轴突再生。在眼压升高的青光眼微珠模型中,4周后通过从上丘逆行注射荧光金(FG)追踪来确定存活和活跃运输的RGC数量。

结果

玻璃体内大剂量给药后,1至7天内NgR1(310)-Fc的终末半衰期约为24小时。视神经挤压损伤后每周注射一次5μg蛋白质可显著增加具有再生轴突的RGC数量。注入前房的微珠可升高眼压,并使对照大鼠中FG标记的RGC减少15%,大直径RGC减少40%。玻璃体内注射NgR1(310)-Fc并未降低眼压,但可将大直径RGC密度维持在对照水平。

结论

人NgR1(310)-Fc在玻璃体空间具有良好的药代动力学,并可挽救因眼压升高而减少的大直径RGC数量。因此,NgR1阻断诱饵蛋白可能作为一种改善病情的青光眼治疗方法具有疗效。

相似文献

引用本文的文献

1
Pharmacological intervention for chronic phase of spinal cord injury.脊髓损伤慢性期的药物干预
Neural Regen Res. 2025 May 1;20(5):1377-1389. doi: 10.4103/NRR.NRR-D-24-00176. Epub 2024 Jun 26.

本文引用的文献

2
Nogo limits neural plasticity and recovery from injury.Nogo蛋白限制神经可塑性和损伤后的恢复。
Curr Opin Neurobiol. 2014 Aug;27:53-60. doi: 10.1016/j.conb.2014.02.011. Epub 2014 Mar 12.
4
Three-dimensional imaging of solvent-cleared organs using 3DISCO.使用 3DISCO 对溶剂清除器官进行三维成像。
Nat Protoc. 2012 Nov;7(11):1983-95. doi: 10.1038/nprot.2012.119. Epub 2012 Oct 11.
5
Critical period for acoustic preference in mice.小鼠的听觉偏好关键期。
Proc Natl Acad Sci U S A. 2012 Oct 16;109 Suppl 2(Suppl 2):17213-20. doi: 10.1073/pnas.1200705109. Epub 2012 Oct 8.
10
Glaucoma.青光眼。
Lancet. 2011 Apr 16;377(9774):1367-77. doi: 10.1016/S0140-6736(10)61423-7. Epub 2011 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验