Smith Ashley M, Marbella Lauren E, Johnston Kathryn A, Hartmann Michael J, Crawford Scott E, Kozycz Lisa M, Seferos Dwight S, Millstone Jill E
Department of Chemistry, University of Pittsburgh , 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States.
Anal Chem. 2015 Mar 3;87(5):2771-8. doi: 10.1021/ac504081k. Epub 2015 Feb 6.
We use nuclear magnetic resonance spectroscopy methods to quantify the extent of ligand exchange between different types of thiolated molecules on the surface of gold nanoparticles. Specifically, we determine ligand density values for single-moiety ligand shells and then use these data to describe ligand exchange behavior with a second, thiolated molecule. Using these techniques, we identify trends in gold nanoparticle functionalization efficiency with respect to ligand type, concentration, and reaction time as well as distinguish between functionalization pathways where the new ligand may either replace the existing ligand shell (exchange) or add to it ("backfilling"). Specifically, we find that gold nanoparticles functionalized with thiolated macromolecules, such as poly(ethylene glycol) (1 kDa), exhibit ligand exchange efficiencies ranging from 70% to 95% depending on the structure of the incoming ligand. Conversely, gold nanoparticles functionalized with small-molecule thiolated ligands exhibit exchange efficiencies as low as 2% when exposed to thiolated molecules under identical exchange conditions. Taken together, the reported results provide advances in the fundamental understanding of mixed ligand shell formation and will be important for the preparation of gold nanoparticles in a variety of biomedical, optoelectronic, and catalytic applications.
我们使用核磁共振光谱方法来量化金纳米颗粒表面不同类型硫醇化分子之间配体交换的程度。具体而言,我们确定单一组分配体壳层的配体密度值,然后使用这些数据来描述与第二种硫醇化分子的配体交换行为。通过这些技术,我们确定了金纳米颗粒在配体类型、浓度和反应时间方面的功能化效率趋势,以及区分新配体可能取代现有配体壳层(交换)或添加到其上(“回填”)的功能化途径。具体而言,我们发现用硫醇化大分子(如聚乙二醇(1 kDa))功能化的金纳米颗粒,根据引入配体的结构,其配体交换效率在70%至95%之间。相反,在相同的交换条件下,当暴露于硫醇化分子时,用小分子硫醇化配体功能化的金纳米颗粒的交换效率低至2%。综上所述,所报道的结果为混合配体壳层形成的基本理解提供了进展,并且对于在各种生物医学、光电和催化应用中制备金纳米颗粒将具有重要意义。