Halford Gabriel C, Hertle Sebastian, N Nambiar Harikrishnan, Personick Michelle L
Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States.
ACS Nanosci Au. 2025 Jul 18;5(4):240-261. doi: 10.1021/acsnanoscienceau.5c00051. eCollection 2025 Aug 20.
The complex chemical nature of metal nanoparticle synthesis presents obstacles for the mechanistic understanding of nanoparticle growth and predictive synthesis design, despite significant progress in this area. Real-time characterization of the chemical processes that take place throughout nanoparticle growth will enable progress toward addressing outstanding challenges in metal nanoparticle synthesis, such as mitigating synthetic reproducibility issues, defining chemical mechanisms that direct nanoparticle growth, and designing synthetic conditions for previously unachievable combinations of nanoparticle shape and composition. In this Perspective, we present open-circuit potential (OCP) measurements as an in situ, real-time method for characterizing chemical changes during nanoparticle growth and discuss the method's strengths in comparison to and in combination with other characterization techniques. We propose the use of OCP measurements as benchmarks for troubleshooting irreproducibility and streamlining synthetic optimization. Finally, we explore possibilities for using the increased parameter space accessible by electrodeposition to accelerate the development of shape-selective nanoparticle syntheses.
尽管在金属纳米颗粒合成领域取得了重大进展,但金属纳米颗粒合成复杂的化学本质给纳米颗粒生长的机理理解和预测性合成设计带来了障碍。对纳米颗粒生长过程中发生的化学过程进行实时表征,将有助于在解决金属纳米颗粒合成方面的突出挑战上取得进展,例如缓解合成可重复性问题、确定指导纳米颗粒生长的化学机制,以及为以前无法实现的纳米颗粒形状和组成组合设计合成条件。在这篇观点文章中,我们介绍了开路电位(OCP)测量作为一种原位实时方法,用于表征纳米颗粒生长过程中的化学变化,并讨论了该方法与其他表征技术相比的优势以及与之结合使用的情况。我们建议将OCP测量用作解决不可重复性问题和简化合成优化的基准。最后,我们探索了利用电沉积可获得的更多参数空间来加速形状选择性纳米颗粒合成发展的可能性。