Rangel-Gomez Mauricio, Knight Robert T, Krämer Ulrike M
Dept. of Cognitive Psychology, VU University Amsterdam, Amsterdam, The Netherlands; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA; Dept. of Psychology, University of California, Berkeley, Berkeley, CA, USA.
Int J Psychophysiol. 2015 Sep;97(3):233-44. doi: 10.1016/j.ijpsycho.2015.01.012. Epub 2015 Feb 7.
Response inhibition is an essential control function necessary to adapt one's behavior. This key cognitive capacity is assumed to be dependent on the prefrontal cortex and basal ganglia. It is unresolved whether varying inhibitory demands engage different control mechanisms or whether a single motor inhibitory mechanism is involved in any situation. We addressed this question by comparing electrophysiological activity in conditions that require stopping a response to conditions that require switching to an alternate response. Analyses of electrophysiological data obtained from stop-signal tasks are complicated by overlapping stimulus-related activity that is distributed over frontal and parietal cortical recording sites. Here, we applied Laplacian transformation and independent component analysis (ICA) to overcome these difficulties. Participants were faster in switching compared to stopping a response, but we did not observe differences in neural activity between these conditions. Both stop- and change-trials Laplacian transformed ERPs revealed a comparable bilateral parieto-occipital negativity around 180 ms and a frontocentral negativity around 220 ms. ICA results suggested an inhibition-related frontocentral component which was characterized by a negativity around 200 ms with a likely source in anterior cingulate cortex. The data provide support for the importance of posterior mediofrontal areas in inhibitory response control and are consistent with a common neural pathway underlying stopping and changing of a motor response. The methodological approach proved useful to distinguish frontal and parietal sources despite similar timing and the ICA approach allowed assessment of single-trial data with respect to behavioral data.
反应抑制是调整自身行为所必需的一项基本控制功能。这种关键的认知能力被认为依赖于前额叶皮层和基底神经节。目前尚不清楚不同的抑制需求是否涉及不同的控制机制,还是在任何情况下都涉及单一的运动抑制机制。我们通过比较在需要停止反应的条件下和需要切换到另一种反应的条件下的电生理活动来解决这个问题。从停止信号任务中获得的电生理数据的分析因分布在前额叶和顶叶皮层记录部位的与刺激相关的重叠活动而变得复杂。在这里,我们应用拉普拉斯变换和独立成分分析(ICA)来克服这些困难。与停止反应相比,参与者切换反应的速度更快,但我们没有观察到这些条件之间神经活动的差异。停止试验和变化试验的拉普拉斯变换后的事件相关电位(ERPs)均显示,在约180毫秒时双侧顶枕部有类似的负电位,在约220毫秒时额中央有负电位。ICA结果显示了一个与抑制相关的额中央成分,其特征是在约200毫秒时有一个负电位,可能起源于前扣带回皮层。这些数据为后内侧额叶区域在抑制性反应控制中的重要性提供了支持,并与运动反应停止和改变的共同神经通路一致。尽管时间相似,但该方法被证明有助于区分额叶和顶叶的来源,并且ICA方法允许根据行为数据评估单试次数据。