Rawson Shaun, Phillips Clair, Huss Markus, Tiburcy Felix, Wieczorek Helmut, Trinick John, Harrison Michael A, Muench Stephen P
School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
Abteilung Tierphysiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, 49069 Osnabrück, Germany.
Structure. 2015 Mar 3;23(3):461-471. doi: 10.1016/j.str.2014.12.016. Epub 2015 Feb 5.
Vacuolar H(+)-ATPases are multisubunit complexes that operate with rotary mechanics and are essential for membrane proton transport throughout eukaryotes. Here we report a ∼ 1 nm resolution reconstruction of a V-ATPase in a different conformational state from that previously reported for a lower-resolution yeast model. The stator network of the V-ATPase (and by implication that of other rotary ATPases) does not change conformation in different catalytic states, and hence must be relatively rigid. We also demonstrate that a conserved bearing in the catalytic domain is electrostatic, contributing to the extraordinarily high efficiency of rotary ATPases. Analysis of the rotor axle/membrane pump interface suggests how rotary ATPases accommodate different c ring stoichiometries while maintaining high efficiency. The model provides evidence for a half channel in the proton pump, supporting theoretical models of ion translocation. Our refined model therefore provides new insights into the structure and mechanics of the V-ATPases.
液泡H(+) - ATP酶是多亚基复合物,通过旋转机制发挥作用,对真核生物中跨膜质子运输至关重要。在此,我们报告了一种V - ATP酶的约1纳米分辨率重建结构,其构象状态与先前报道的低分辨率酵母模型不同。V - ATP酶的定子网络(以及其他旋转ATP酶的定子网络)在不同催化状态下不会改变构象,因此必定相对刚性。我们还证明,催化结构域中的一个保守轴承是静电性的,这有助于旋转ATP酶具有极高的效率。对转子轴/膜泵界面的分析表明了旋转ATP酶如何在保持高效率的同时适应不同的c环化学计量。该模型为质子泵中的半通道提供了证据,支持离子转运的理论模型。因此,我们改进后的模型为V - ATP酶的结构和机制提供了新的见解。