Suppr超能文献

分裂与重组:液泡H⁺-ATP酶的隐秘生活

Breaking up and making up: The secret life of the vacuolar H -ATPase.

作者信息

Oot Rebecca A, Couoh-Cardel Sergio, Sharma Stuti, Stam Nicholas J, Wilkens Stephan

机构信息

Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, 13210.

出版信息

Protein Sci. 2017 May;26(5):896-909. doi: 10.1002/pro.3147. Epub 2017 Mar 16.

Abstract

The vacuolar ATPase (V-ATPase; V V -ATPase) is a large multisubunit proton pump found in the endomembrane system of all eukaryotic cells where it acidifies the lumen of subcellular organelles including lysosomes, endosomes, the Golgi apparatus, and clathrin-coated vesicles. V-ATPase function is essential for pH and ion homeostasis, protein trafficking, endocytosis, mechanistic target of rapamycin (mTOR), and Notch signaling, as well as hormone secretion and neurotransmitter release. V-ATPase can also be found in the plasma membrane of polarized animal cells where its proton pumping function is involved in bone remodeling, urine acidification, and sperm maturation. Aberrant (hypo or hyper) activity has been associated with numerous human diseases and the V-ATPase has therefore been recognized as a potential drug target. Recent progress with moderate to high-resolution structure determination by cryo electron microscopy and X-ray crystallography together with sophisticated single-molecule and biochemical experiments have provided a detailed picture of the structure and unique mode of regulation of the V-ATPase. This review summarizes the recent advances, focusing on the structural and biophysical aspects of the field.

摘要

液泡型ATP酶(V-ATP酶;V V -ATP酶)是一种大型多亚基质子泵,存在于所有真核细胞的内膜系统中,它可酸化包括溶酶体、内体、高尔基体和网格蛋白包被小泡在内的亚细胞器腔。V-ATP酶的功能对于pH值和离子稳态、蛋白质运输、内吞作用、雷帕霉素机制靶点(mTOR)和Notch信号传导以及激素分泌和神经递质释放至关重要。V-ATP酶也可存在于极化动物细胞的质膜中,其质子泵功能参与骨重塑、尿液酸化和精子成熟。异常(低或高)活性与多种人类疾病相关,因此V-ATP酶被认为是一个潜在的药物靶点。最近,通过冷冻电子显微镜和X射线晶体学进行的中高分辨率结构测定以及复杂的单分子和生化实验取得了进展,为V-ATP酶的结构和独特调节模式提供了详细的图像。本综述总结了最近的进展,重点关注该领域的结构和生物物理方面。

相似文献

1
Breaking up and making up: The secret life of the vacuolar H -ATPase.
Protein Sci. 2017 May;26(5):896-909. doi: 10.1002/pro.3147. Epub 2017 Mar 16.
2
A structural model of the vacuolar ATPase from transmission electron microscopy.
Micron. 2005;36(2):109-26. doi: 10.1016/j.micron.2004.10.002.
3
The Vacuolar ATPase - A Nano-scale Motor That Drives Cell Biology.
Subcell Biochem. 2018;87:409-459. doi: 10.1007/978-981-10-7757-9_14.
6
Vacuolar and plasma membrane proton-adenosinetriphosphatases.
Physiol Rev. 1999 Apr;79(2):361-85. doi: 10.1152/physrev.1999.79.2.361.
7
Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase.
Nature. 2015 May 14;521(7551):241-5. doi: 10.1038/nature14365.
8
V-ATPase-dependent luminal acidification is required for endocytic recycling of a yeast cell wall stress sensor, Wsc1p.
Biochem Biophys Res Commun. 2014 Jan 10;443(2):549-55. doi: 10.1016/j.bbrc.2013.12.008. Epub 2013 Dec 8.
9
Amino Acid Availability Modulates Vacuolar H+-ATPase Assembly.
J Biol Chem. 2015 Nov 6;290(45):27360-27369. doi: 10.1074/jbc.M115.659128. Epub 2015 Sep 16.
10
Affinity Purification and Structural Features of the Yeast Vacuolar ATPase Vo Membrane Sector.
J Biol Chem. 2015 Nov 13;290(46):27959-71. doi: 10.1074/jbc.M115.662494. Epub 2015 Sep 28.

引用本文的文献

1
Early responses to hyperosmotic stress at the yeast vacuole.
bioRxiv. 2025 Aug 13:2025.08.11.669746. doi: 10.1101/2025.08.11.669746.
2
Interaction of yeast V-ATPase with TLDc protein Rtc5p.
bioRxiv. 2025 May 24:2025.05.24.655954. doi: 10.1101/2025.05.24.655954.
3
Vacuolar (H)-ATPase Genes Are Essential for Cuticle and Wing Development in .
Genes (Basel). 2025 Jan 24;16(2):145. doi: 10.3390/genes16020145.
6
Monoclonal nanobodies alter the activity and assembly of the yeast vacuolar H-ATPase.
bioRxiv. 2025 Jan 11:2025.01.10.632502. doi: 10.1101/2025.01.10.632502.
7
V-ATPase in cancer: mechanistic insights and therapeutic potentials.
Cell Commun Signal. 2024 Dec 20;22(1):613. doi: 10.1186/s12964-024-01998-9.
8
Conjugation of ATG8s to single membranes at a glance.
J Cell Sci. 2024 Aug 1;137(15). doi: 10.1242/jcs.261031. Epub 2024 Aug 15.
9
10
Cytosolic and Acrosomal pH Regulation in Mammalian Sperm.
Cells. 2024 May 17;13(10):865. doi: 10.3390/cells13100865.

本文引用的文献

2
Atomic model for the membrane-embedded V motor of a eukaryotic V-ATPase.
Nature. 2016 Nov 3;539(7627):118-122. doi: 10.1038/nature19828. Epub 2016 Oct 24.
3
Crystal structure of yeast V1-ATPase in the autoinhibited state.
EMBO J. 2016 Aug 1;35(15):1694-706. doi: 10.15252/embj.201593447. Epub 2016 Jun 13.
5
Affinity Purification and Structural Features of the Yeast Vacuolar ATPase Vo Membrane Sector.
J Biol Chem. 2015 Nov 13;290(46):27959-71. doi: 10.1074/jbc.M115.662494. Epub 2015 Sep 28.
7
Amino Acid Availability Modulates Vacuolar H+-ATPase Assembly.
J Biol Chem. 2015 Nov 6;290(45):27360-27369. doi: 10.1074/jbc.M115.659128. Epub 2015 Sep 16.
8
Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase.
Nature. 2015 May 14;521(7551):241-5. doi: 10.1038/nature14365.
9
The membrane domain of vacuolar H(+)ATPase: a crucial player in neurotransmitter exocytotic release.
Cell Mol Life Sci. 2015 Jul;72(13):2561-73. doi: 10.1007/s00018-015-1886-2. Epub 2015 Mar 21.
10
Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase.
Nature. 2015 May 14;521(7551):237-40. doi: 10.1038/nature14185. Epub 2015 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验