Suppr超能文献

地形突出度作为单分子定位数据中聚类识别的一种方法。

Topographic prominence as a method for cluster identification in single-molecule localisation data.

作者信息

Griffié Juliette, Boelen Lies, Burn Garth, Cope Andrew P, Owen Dylan M

机构信息

Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, Hodgkin Building, Guy's Campus, London, SE1 1UL, United Kingdom.

Section of Immunology, Division of Infectious Diseases, Faculty of Medicine, Imperial College London, Praed Street, St Mary's Campus, London, United Kingdom.

出版信息

J Biophotonics. 2015 Nov;8(11-12):925-34. doi: 10.1002/jbio.201400127. Epub 2015 Feb 6.

Abstract

Single-molecule localisation based super-resolution fluorescence imaging produces maps of the coordinates of fluorescent molecules in a region of interest. Cluster analysis algorithms provide information concerning the clustering characteristics of these molecules, often through the generation of cluster heat maps based on local molecular density. The goal of this study was to generate a new cluster analysis method based on a topographic approach. In particular, a topographic map of the level of clustering across a region is generated based on Getis' variant of Ripley's K-function. By using the relative heights (topographic prominence, TP) of the peaks in the map, cluster characteristics can be identified more accurately than by using previously demonstrated height thresholds. Analogous to geological TP, the concepts of wet and dry TP and topographic isolation are introduced to generate binary maps. The algorithm is validated using simulated and experimental data and found to significantly outperform previous cluster identification methods. Illustration of the topographic prominence based cluster analysis algorithm.

摘要

基于单分子定位的超分辨率荧光成像可生成感兴趣区域内荧光分子坐标图。聚类分析算法通常通过基于局部分子密度生成聚类热图,来提供有关这些分子聚类特征的信息。本研究的目的是基于一种地形学方法生成一种新的聚类分析方法。具体而言,基于Getis对Ripley's K函数的变体,生成一个区域内聚类水平的地形图。通过使用图中峰值的相对高度(地形突出度,TP),与使用先前证明的高度阈值相比,能够更准确地识别聚类特征。类似于地质TP,引入湿TP、干TP和地形隔离的概念来生成二值图。该算法通过模拟数据和实验数据进行验证,发现其性能显著优于先前的聚类识别方法。基于地形突出度的聚类分析算法示意图。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验