Suppr超能文献

贝叶斯聚类在单分子定位显微镜数据中的应用。

Bayesian cluster identification in single-molecule localization microscopy data.

机构信息

School of Mathematics, Heilbronn Institute for Mathematical Research, University of Bristol, Bristol, UK.

Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, London, UK.

出版信息

Nat Methods. 2015 Nov;12(11):1072-6. doi: 10.1038/nmeth.3612. Epub 2015 Oct 5.

Abstract

Single-molecule localization-based super-resolution microscopy techniques such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM) produce pointillist data sets of molecular coordinates. Although many algorithms exist for the identification and localization of molecules from raw image data, methods for analyzing the resulting point patterns for properties such as clustering have remained relatively under-studied. Here we present a model-based Bayesian approach to evaluate molecular cluster assignment proposals, generated in this study by analysis based on Ripley's K function. The method takes full account of the individual localization precisions calculated for each emitter. We validate the approach using simulated data, as well as experimental data on the clustering behavior of CD3ζ, a subunit of the CD3 T cell receptor complex, in resting and activated primary human T cells.

摘要

基于单分子定位的超分辨率显微镜技术,如光激活定位显微镜(PALM)和随机光学重建显微镜(STORM),会产生分子坐标的点状数据集。尽管存在许多从原始图像数据中识别和定位分子的算法,但用于分析聚类等特性的点状模式的方法仍然相对研究不足。在这里,我们提出了一种基于模型的贝叶斯方法来评估分子聚类分配方案,这些方案是通过基于里普利 K 函数的分析在本研究中生成的。该方法充分考虑了为每个发射器计算的单个定位精度。我们使用模拟数据以及关于 CD3ζ(CD3 受体复合物的一个亚基)在静止和激活的原代人 T 细胞中的聚类行为的实验数据验证了该方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验