Patel Anant B, de Graaf Robin A, Rothman Douglas L, Behar Kevin L
Department of Diagnostic Radiology and the Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut.
CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.
J Neurosci Res. 2015 Jul;93(7):1101-8. doi: 10.1002/jnr.23548. Epub 2015 Feb 6.
γ-Aminobutyric acid (GABA) clearance from the extracellular space after release from neurons involves reuptake into terminals and astrocytes through GABA transporters (GATs). The relative flows through these two pathways for GABA released from neurons remains unclear. This study determines the effect of tiagabine, a selective inhibitor of neuronal GAT-1, on the rates of glutamate (Glu) and GABA metabolism and GABA resynthesis via the GABA-glutamine (Gln) cycle. Halothane-anesthetized rats were administered tiagabine (30 mg/kg, i.p.) and 45 min later received an intravenous infusion of either [1,6-(13)C2]glucose (in vivo) or [2-(13)C]acetate (ex vivo). Nontreated rats served as controls. Metabolites and (13)C enrichments were measured with (1)H-[(13)C]-nuclear magnetic resonance spectroscopy and referenced to their corresponding endpoint values measured in extracts from in situ frozen brain. Metabolic flux estimates of GABAergic and glutamatergic neurons were determined by fitting a metabolic model to the (13)C turnover data measured in vivo during [1,6-(13)C2]glucose infusion. Tiagabine-treated rats were indistinguishable (P > 0.05) from controls in tissue amino acid levels and in (13)C enrichments from [2-(13)C]acetate. Tiagabine reduced average rates of glucose oxidation and neurotransmitter cycling in both glutamatergic neurons (↓18%, CMR(glc(ox)Glu): control, 0.27 ± 0.05 vs. tiagabine, 0.22 ± 0.04 µmol/g/min; ↓11%, V(cyc(Glu-Gln)): control 0.23 ± 0.05 vs. tiagabine 0.21 ± 0.04 µmol/g/min and GABAergic neurons (↓18-25%, CMR(glc(ox)GABA): control 0.09 ± 0.02 vs. tiagabine 0.07 ± 0.03 µmol/g/min; V(cyc(GABA-Gln)): control 0.08 ± 0.02 vs. tiagabine 0.07 ± 0.03 µmol/g/min), but the changes in glutamatergic and GABAergic fluxes were not significant (P > 0.10). The results suggest that any reduction in GABA metabolism by tiagabine might be an indirect response to reduced glutamatergic drive rather than direct compensatory effects.
γ-氨基丁酸(GABA)从神经元释放后,从细胞外空间清除的过程涉及通过GABA转运体(GATs)重新摄取到终末和星形胶质细胞中。从神经元释放的GABA通过这两条途径的相对流量仍不清楚。本研究确定了神经元GAT-1的选择性抑制剂噻加宾对谷氨酸(Glu)和GABA代谢速率以及通过GABA-谷氨酰胺(Gln)循环进行的GABA再合成的影响。对氟烷麻醉的大鼠给予噻加宾(30mg/kg,腹腔注射),45分钟后静脉输注[1,6-(13)C2]葡萄糖(体内)或[2-(13)C]乙酸盐(体外)。未处理的大鼠作为对照。用1H-[(13)C]-核磁共振波谱法测量代谢物和(13)C富集,并参照原位冷冻脑提取物中测量的相应终点值。通过将代谢模型拟合到[1,6-(13)C2]葡萄糖输注期间体内测量的(13)C周转数据,确定GABA能和谷氨酸能神经元的代谢通量估计值。噻加宾处理的大鼠在组织氨基酸水平和[2-(13)C]乙酸盐的(13)C富集方面与对照无差异(P>0.05)。噻加宾降低了谷氨酸能神经元(降低18%,CMR(glc(ox)Glu):对照,0.27±0.05对噻加宾,0.22±0.04μmol/g/min;降低11%,V(cyc(Glu-Gln)):对照0.23±0.05对噻加宾0.21±0.04μmol/g/min)和GABA能神经元(降低18-25%,CMR(glc(ox)GABA):对照0.09±0.02对噻加宾0.07±0.03μmol/g/min;V(cyc(GABA-Gln)):对照0.08±0.02对噻加宾0.07±0.03μmol/g/min)的葡萄糖氧化和神经递质循环的平均速率,但谷氨酸能和GABA能通量的变化不显著(P>0.10)。结果表明,噻加宾对GABA代谢的任何降低可能是对谷氨酸能驱动降低的间接反应,而非直接的代偿效应。