Dynamic and Pathophysiology of Neuronal Networks, INSERM U667, College de France, 75005 Paris, France.
J Physiol. 2011 May 1;589(Pt 9):2301-19. doi: 10.1113/jphysiol.2010.203125. Epub 2011 Mar 8.
The astrocytes, active elements of the tripartite synapse, remove most of the neurotransmitter that spills over the synaptic cleft. Neurotransmitter uptake operated by astrocytes contributes to the strength and timing of synaptic inputs. The striatum, the main input nucleus of basal ganglia, extracts pertinent cortical signals from the background noise and relays cortical information toward basal ganglia output structures. We investigated the role of striatal astrocytic uptake in the shaping of corticostriatal transmission.We performed dual patch-clamp recordings of striatal output neuron (the medium-sized spiny neurons, MSNs)–astrocyte pairs while stimulating the somatosensory cortex. Cortical activity evoked robust synaptically activated transporter-mediated currents (STCs) in 78% of the recorded astrocytes. STCs originated equally from the activities of glutamate transporters and GABA transporters (GATs). Astrocytic STCs reflected here a presynaptic release of neurotransmitters. STCs displayed a large magnitude associated with fast kinetics, denoting an efficient neurotransmitter clearance at the corticostriatal pathway. Inhibition of glutamate transporters type-1 (GLT-1) and GATs decreased the corticostriatal synaptic transmission, through, respectively, desensitization of AMPA receptors and activation of GABAA receptor. STCs displayed a bidirectional short-term plasticity (facilitation for paired-pulse intervals less than 100 ms and depression up to 1 s).We report a genuine facilitation of STCs for high-frequency cortical activity, which could strengthen the detection properties of cortical activity operated by MSNs. MSN EPSCs showed a triphasic short-term plasticity, which was modified by the blockade of GLT-1 or GATs. We show here that neurotransmitter uptake by astrocytes plays a key role in the corticostriatal information processing.
星形胶质细胞是三突触连接的活跃元素,可清除突触间隙中溢出的大部分神经递质。星形胶质细胞摄取神经递质有助于调节突触输入的强度和时间。纹状体是基底神经节的主要输入核团,它从背景噪声中提取相关的皮质信号,并将皮质信息传递到基底神经节的输出结构。我们研究了纹状体星形胶质细胞摄取在皮质纹状体传递形成中的作用。我们在刺激躯体感觉皮层的同时,对纹状体输出神经元(中型棘突神经元,MSNs)-星形胶质细胞对进行双膜片钳记录。皮层活动在 78%的记录星形胶质细胞中诱发了强烈的突触激活转运体介导的电流(STCs)。STCs 同样源自谷氨酸转运体和 GABA 转运体(GATs)的活性。这里记录的星形胶质细胞 STCs 反映了神经递质的突触前释放。STCs 具有大的幅度和快速的动力学,表明在皮质纹状体通路上具有有效的神经递质清除作用。谷氨酸转运体 1 型(GLT-1)和 GATs 的抑制降低了皮质纹状体的突触传递,分别通过 AMPA 受体的脱敏和 GABAA 受体的激活。STCs 表现出双向的短期可塑性(对于双脉冲间隔小于 100 毫秒的刺激表现为易化,对于 1 秒内的刺激表现为抑制)。我们报告了 STCs 对高频皮层活动的真正易化作用,这可能增强了 MSN 操作的皮层活动的检测特性。MSN EPSCs 表现出三阶段的短期可塑性,其可通过 GLT-1 或 GATs 的阻断来改变。我们在这里表明,星形胶质细胞摄取神经递质在皮质纹状体信息处理中起着关键作用。