Zu Guoqing, Shen Jun, Wang Wenqin, Zou Liping, Lian Ya, Zhang Zhihua
Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Pohl Institute of Solid State Physics, Tongji University , Shanghai 200092, P. R. China.
ACS Appl Mater Interfaces. 2015 Mar 11;7(9):5400-9. doi: 10.1021/am5089132. Epub 2015 Feb 27.
Silica-titania composite aerogels were synthesized by chemical liquid deposition of titania onto nanoporous silica scaffolds. This novel deposition process was based on chemisorption of partially hydrolyzed titanium alkoxides from solution onto silica nanoparticle surfaces and subsequent hydrolysis and condensation to afford titania nanoparticles on the silica surface. The titania is homogeneously distributed in the silica-titania composite aerogels, and the titania content can be effectively controlled by regulating the deposition cycles. The resultant composite aerogel with 15 deposition cycles possessed a high specific surface area (SSA) of 425 m(2)/g, a small particle size of 5-14 nm, and a large pore volume and pore size of 2.41 cm(3)/g and 18.1 nm, respectively, after heat treatment at 600 °C and showed high photocatalytic activity in the photodegradation of methylene blue under UV-light irradiation. Its photocatalytic activity highly depends on the deposition cycles and heat treatment. The combination of small particle size, high SSA, and enhanced crystallinity after heat treatment at 600 °C contributes to the excellent photocatalytic property of the silica-titania composite aerogel. The higher SSAs compared to those of the reported titania aerogels (<200 m(2)/g at 600 °C) at high temperatures combined with the simple method makes the silica-titania aerogels promising candidates as photocatalysts.
通过将二氧化钛化学液相沉积到纳米多孔二氧化硅支架上合成了二氧化硅 - 二氧化钛复合气凝胶。这种新颖的沉积过程基于从溶液中部分水解的钛醇盐在二氧化硅纳米颗粒表面的化学吸附,随后进行水解和缩合,从而在二氧化硅表面得到二氧化钛纳米颗粒。二氧化钛均匀分布在二氧化硅 - 二氧化钛复合气凝胶中,并且可以通过调节沉积循环有效地控制二氧化钛含量。经过15次沉积循环得到的复合气凝胶在600℃热处理后具有425 m²/g的高比表面积(SSA)、5 - 14 nm的小粒径、2.41 cm³/g的大孔体积和18.1 nm的大孔径,并且在紫外光照射下对亚甲基蓝的光降解表现出高光催化活性。其光催化活性高度依赖于沉积循环和热处理。小粒径、高比表面积以及在600℃热处理后增强的结晶度的结合有助于二氧化硅 - 二氧化钛复合气凝胶优异的光催化性能。与报道的二氧化钛气凝胶(600℃时<200 m²/g)相比,高温下更高的比表面积以及简单的方法使二氧化硅 - 二氧化钛气凝胶成为有前景的光催化剂候选材料。